Development of an in vivo assay to identify structural determinants in murine leukemia virus reverse transcriptase important for fidelity

被引:20
作者
Halvas, EK
Svarovskaia, ES
Pathak, VK
机构
[1] W Virginia Univ, Mary Babb Randolph Canc Ctr, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Biochem, Morgantown, WV 26506 USA
关键词
D O I
10.1128/JVI.74.1.312-319.2000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Error-prone DNA synthesis by retroviral reverse transcriptases (RTs) is a major contributor to variation in retroviral populations. Structural features of retroviral RTs that are important fur accuracy of DNA Synthesis in vivo are not known. To identify structural elements of murine leukemia virus (MLV) RT important for fidelity in vivo, we developed a D17-based encapsidating cell line (ANGIE P) which is designed to express the amphotropic MLV envelope. ANGIE: P also contains an MLV-based retroviral vector (GA-1) which encodes a wild-type bacterial beta-galactosidase gene (lacZ) and a neomycin phosphotransferase gene. Transfection of ANGIE P cells with wild-type or mutated MLV gag-pol expression constructs generated GA-1 virus that was able to undergo only one cycle of viral replication upon infection of D17 cells. The infected D17 cell clones were characterized by staining with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), and the frequencies of inactivating mutations in lacZ were quantified. Three mutations in the YVDD motif (V223M, V223S, and V223A) and two mutations in the RNase H domain (S526A and R657S) exhibited frequencies of lacZ inactivation 1.2- to 2.3-fold higher than that for the wild-type MLV RT (P < 0.005). Two mutations (V223I and Y598V) did not affect the frequency of lacZ inactivation. These results establish a sensitive in vivo assay for identification of structural determinants important for accuracy of DNA synthesis and indicate that several structural determinants may have an effect on the in vivo fidelity of MLV RT.
引用
收藏
页码:312 / 319
页数:8
相关论文
共 69 条
[1]   The processivity of DNA synthesis, exhibited by drug-resistant variants of human immunodeficiency virus type-1 reverse transcriptase [J].
Avidan, O ;
Hizi, A .
NUCLEIC ACIDS RESEARCH, 1998, 26 (07) :1713-1717
[2]   Mutational studies of human immunodeficiency virus type 1 reverse transcriptase: The involvement of residues 183 and 184 in the fidelity of DNA synthesis [J].
Bakhanashvili, M ;
Avidan, O ;
Hizi, A .
FEBS LETTERS, 1996, 391 (03) :257-262
[3]   Vertical-scanning mutagenesis of a critical tryptophan in the minor groove binding track of HIV-1 reverse transcriptase - Molecular nature of polymerase-nucleic acid interactions [J].
Beard, WA ;
Bebenek, K ;
Darden, TA ;
Li, L ;
Prasad, R ;
Kunkel, TA ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) :30435-30442
[4]  
BEBENEK K, 1993, J BIOL CHEM, V268, P10324
[5]   REDUCED FRAMESHIFT FIDELITY AND PROCESSIVITY OF HIV-1 REVERSE-TRANSCRIPTASE MUTANTS CONTAINING ALANINE SUBSTITUTIONS IN HELIX-H OF THE THUMB SUBDOMAIN [J].
BEBENEK, K ;
BEARD, WA ;
CASASFINET, JR ;
KIM, HR ;
DARDEN, TA ;
WILSON, SH ;
KUNKEL, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (33) :19516-19523
[6]  
BEBENEK K, 1989, J BIOL CHEM, V264, P16948
[7]  
BLAIN SW, 1993, J BIOL CHEM, V268, P23585
[8]   EFFECTS ON DNA-SYNTHESIS AND TRANSLOCATION CAUSED BY MUTATIONS IN THE RNASE-H DOMAIN OF MOLONEY MURINE LEUKEMIA-VIRUS REVERSE-TRANSCRIPTASE [J].
BLAIN, SW ;
GOFF, SP .
JOURNAL OF VIROLOGY, 1995, 69 (07) :4440-4452
[9]   HIGH-LEVEL RESISTANCE TO (-) ENANTIOMERIC 2'-DEOXY-3'-THIACYTIDINE IN-VITRO IS DUE TO ONE AMINO-ACID SUBSTITUTION IN THE CATALYTIC SITE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 REVERSE-TRANSCRIPTASE [J].
BOUCHER, CAB ;
CAMMACK, N ;
SCHIPPER, P ;
SCHUURMAN, R ;
ROUSE, P ;
WAINBERG, MA ;
CAMERON, JM .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1993, 37 (10) :2231-2234
[10]   ANALYSIS OF MUTATIONS AT POSITION-184 IN REVERSE-TRANSCRIPTASE OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 [J].
BOYER, PL ;
HUGHES, SH .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (07) :1624-1628