Effects of the protein kinase inhibitors wortmannin and KN62 on cellular radiosensitivity and radiation-activated S phase and G1/S checkpoints in normal human fibroblasts

被引:22
作者
Enns, L [1 ]
Murray, D [1 ]
Mirzayans, R [1 ]
机构
[1] Univ Alberta, Dept Oncol, Cross Canc Inst, Edmonton, AB T6G 1Z2, Canada
关键词
wortmannin; KN62; ionizing radiation; radiosensitivity; cell cycle checkpoint; p53; p21(WAF1);
D O I
10.1038/sj.bjc.6690793
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Wortmannin is a potent inhibitor of phosphatidylinositol (PI) 3-kinase and PI 3-kinase-related proteins (e.g. ATM), but it does not inhibit the activity of purified calmodulin-dependent protein kinase II (CaMKII). In the present study, we compared the effects of wortmannin and the CaMKII inhibitor KN62 on the response of normal human dermal fibroblast cultures to gamma radiation, We demonstrate that wortmannin confers a phenotype on normal fibroblasts remarkably similar to that characteristic of cells homozygous for the ATM mutation. Thus wortmannin-treated normal fibroblasts exhibit increased sensitivity to radiation-induced cell killing, lack of temporary block in transition from G1 to S phase following irradiation (i.e. impaired G1/S checkpoint), and radioresistant DNA synthesis (i.e, impaired S phase checkpoint). Wortmannin-treated cultures display a diminished capacity for radiation-induced up-regulation of p53 protein and expression of p21(WAF1), a p53-regulated gene involved in cell cycle arrest at the G1/S border; the treated cultures also exhibit decreased capacity for enhancement of CaMKII activity post-irradiation, known to be necessary for triggering the S phase checkpoint. We further demonstrate that KN62 confers a radioresistant DNA synthesis phenotype on normal fibroblasts and moderately potentiates their sensitivity to killing by gamma rays, without modulating G1/S checkpoint, p53 up-regulation and p21(WAF1) expression following radiation exposure. We conclude that CaMKII is involved in the radiation responsive signalling pathway mediating S phase checkpoint but not in the p53-dependent pathway controlling G1/S checkpoint, and that a wortmannin-sensitive kinase functions upstream in both pathways. (C) 1999 Cancer Research Campaign.
引用
收藏
页码:959 / 965
页数:7
相关论文
共 34 条
[1]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[2]   RADIOSENSITIVITY IN ATAXIA-TELANGIECTASIA - ANOMALIES IN RADIATION-INDUCED CELL-CYCLE DELAY [J].
BEAMISH, H ;
LAVIN, MF .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1994, 65 (02) :175-184
[3]   RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY [J].
BRUGAROLAS, J ;
CHANDRASEKARAN, C ;
GORDON, JI ;
BEACH, D ;
JACKS, T ;
HANNON, GJ .
NATURE, 1995, 377 (6549) :552-557
[4]   Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints [J].
Cliby, WA ;
Roberts, CJ ;
Cimprich, KA ;
Stringer, CM ;
Lamb, JR ;
Schreiber, SL ;
Friend, SH .
EMBO JOURNAL, 1998, 17 (01) :159-169
[5]   WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION [J].
ELDEIRY, WS ;
TOKINO, T ;
VELCULESCU, VE ;
LEVY, DB ;
PARSONS, R ;
TRENT, JM ;
LIN, D ;
MERCER, WE ;
KINZLER, KW ;
VOGELSTEIN, B .
CELL, 1993, 75 (04) :817-825
[6]   DNA-DEPENDENT PROTEIN-KINASE CATALYTIC SUBUNIT - A RELATIVE OF PHOSPHATIDYLINOSITOL 3-KINASE AND THE ATAXIA-TELANGIECTASIA GENE-PRODUCT [J].
HARTLEY, KO ;
GELL, D ;
SMITH, GCM ;
ZHANG, H ;
DIVECHA, N ;
CONNELLY, MA ;
ADMON, A ;
LEESMILLER, SP ;
ANDERSON, CW ;
JACKSON, SP .
CELL, 1995, 82 (05) :849-856
[7]   Abrogation of P53 function by transfection of HPV16 E6 gene does not enhance resistance of human tumour cells to ionizing radiation [J].
Huang, H ;
Li, CY ;
Little, JB .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1996, 70 (02) :151-160
[8]   CORRECTION OF RADIATION SENSITIVITY IN ATAXIA-TELANGIECTASIA CELLS BY A TRUNCATED I-KAPPA-B-ALPHA [J].
JUNG, M ;
ZHANG, Y ;
LEE, S ;
DRITSCHILO, A .
SCIENCE, 1995, 268 (5217) :1619-1621
[9]   A MAMMALIAN-CELL CYCLE CHECKPOINT PATHWAY UTILIZING P53 AND GADD45 IS DEFECTIVE IN ATAXIA-TELANGIECTASIA [J].
KASTAN, MB ;
ZHAN, QM ;
ELDEIRY, WS ;
CARRIER, F ;
JACKS, T ;
WALSH, WV ;
PLUNKETT, BS ;
VOGELSTEIN, B ;
FORNACE, AJ .
CELL, 1992, 71 (04) :587-597
[10]  
KHANNA KK, 1993, ONCOGENE, V8, P3307