Nucleostemin is a marker of proliferating stromal stem cells in adult human bone marrow

被引:102
作者
Kafienah, Wael [1 ]
Mistry, Sanjay [1 ]
Williams, Christopher [1 ]
Hollander, Anthony P. [1 ]
机构
[1] Univ Bristol, Dept Clin Sci, AMBI Res Labs, Avon Orthopaed Ctr,Southmead Hosp,Acad Rheumatol, Bristol BS10 5NB, Avon, England
关键词
nucleostemin; stem cell; bone marrow; tissue engineering;
D O I
10.1634/stemcells.2005-0416
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The identification of stem cell-specific proteins and the elucidation of their novel regulatory pathways may help in the development of protocols for control of their self-renewal and differentiation for cell-based therapies. Nucleostemin is a recently discovered nucleolar protein predominantly associated with proliferating rat neural and embryonic stem cells, and some human cancer cell lines. A comprehensive study of nucleostemin in human adult bone marrow stem cells is lacking. The aim of the study was to determine if nucleostemin is synthesized by adult bone marrow stem cells and to analyze its expression during their expansion and differentiation. Using a multipotential adherent population of stem cells, nucleostemin was localized to the nucleoli and occurred in 43.3% of the cells. There was a high level of expression of nucleostemin mRNA in bone marrow stem cells and this remained unchanged over time during cell expansion in culture. When bone marrow stem cells were stimulated to proliferate by fibroblast growth factor (FGF)-2, nucleostemin expression increased in a dose-dependent manner. Small interfering RNA (siRNA) knockdown of nucleostemin abolished the proliferative effect of FGF-2. When bone marrow stem cells were differentiated into chondrocytes, adipocytes, or osteocytes, nucleostemin expression was 70%-90% lower than in the undifferentiated cells retained in monolayer culture. We conclude that nucleostemin is a marker of undifferentiated human adult bone marrow stem cells and that it is involved in the regulation of proliferation of these cells.
引用
收藏
页码:1113 / 1120
页数:8
相关论文
共 35 条
[1]   Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection [J].
Baddoo, M ;
Hill, K ;
Wilkinson, R ;
Gaupp, D ;
Hughes, C ;
Kopen, GC ;
Phinney, DG .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 89 (06) :1235-1249
[2]   Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells [J].
Banfi, A ;
Bianchi, G ;
Notaro, R ;
Luzzatto, L ;
Cancedda, R ;
Quarto, R .
TISSUE ENGINEERING, 2002, 8 (06) :901-910
[3]   The nucleolus: at the stem of immortality [J].
Bernardi, R ;
Pandolfi, PP .
NATURE MEDICINE, 2003, 9 (01) :24-25
[4]   Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2 [J].
Bianchi, G ;
Banfi, A ;
Mastrogiacomo, M ;
Notaro, R ;
Luzzatto, L ;
Cancedda, R ;
Quarto, R .
EXPERIMENTAL CELL RESEARCH, 2003, 287 (01) :98-105
[5]  
Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO
[6]  
2-F
[7]   MESENCHYMAL STEM-CELLS [J].
CAPLAN, AI .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) :641-650
[8]   Mesenchymal stem cells: building blocks for molecular medicine in the 21st century [J].
Caplan, AI ;
Bruder, SP .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (06) :259-264
[9]   Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential [J].
D'Ippolito, G ;
Diabira, S ;
Howard, GA ;
Menei, P ;
Roos, BA ;
Schiller, PC .
JOURNAL OF CELL SCIENCE, 2004, 117 (14) :2971-2981
[10]   The STRO-1+marrow cell population is multipotential [J].
Dennis, JE ;
Carbillet, JP ;
Caplan, AI ;
Charbord, P .
CELLS TISSUES ORGANS, 2002, 170 (2-3) :73-82