Lipoprotein(a) [Lp(a)] exhibits many of the same properties as plasminogen, owing to a similar structural makeup from a composite of multiple kringle domains. Shared behavior includes induction of an expanded conformation by lysine analogues, inhibition of this effect, and creation of a compact conformation by NaCl. Here, we examine in detail the independent and mutual effects of NaCl and 6-aminohexanoic acid (6-AHA) on the structure of Lp(a) and the relationship between the binding of the two ligands. We find that NaCl promotes the compact conformation while binding to Lp(a) homogeneously. In the absence of salt, 6-AHA leads to the complete unfolding of Lp(a), a process that is accompanied by cooperative binding. Reversal of conformation and weakening of binding occurred when one ligand was added to Lp(a) in the presence of the other, suggesting competitive binding. High concentrations of NaCl completely reversed the expansion of Lp(a) in 100 mM 6-AHA, and high concentrations of 6-AHA unfolded Lp(a) in the presence of 100 mM NaCl, but only by 30% in the case of the 15 kringle IV Lp(a) studied. Induction of the compact form of Lp(a) appears to be an effect in common with all salts examined and cannot be attributed solely to the anion, as in the case of plasminogen. The results were summarized in terms of a model of Lp(a) depicting the conformational alterations of apo(a) caused by the binding of the two Ligands. In the compact, conformation in NaCl, apo(a) is apposed to the particle surface. The fully expanded form in 6-AHA results from release of both the variable and constant kringle domains. In the intermediate form. in water and in a solution containing both NaCl and 6-AHA, only the variable domain is released from the particle surface.