The depurination reaction of guanosine, protonated or modified with cisplatin at the N7 position, has been studied by density functional theory (DFT), coupled with a continuum treatment of solvation. Protonation accelerates the depurination reaction whereas N7-platination, the initial product of cisplatin binding to DNA, does not. The computed reaction energy profiles demonstrate that N7-platination has only a minor effect on the energetics of the transition state, whereas protonation lowers it by similar to10 kcal mol(-1). The orbitals involved in N7-Pt/H bonding are examined, and electronic differences between the two substituted guanines are identified. Natural bond orbital analysis, fragment orbital analysis, and extended transition-state theory reveal how the electronically different substituents at the N7 position control the stability of the N9-C1' bond. The detailed description of the electronic structure of the N7-substituted guanosines and the computational protocol developed to obtain a realistic model for these systems not only explain a longstanding enigma but also provide guidelines for further studies toward understanding the interactions of cisplatin with DNA.