The elongation defective1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein

被引:30
作者
Lertpiriyapong, K [1 ]
Sung, ZR [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
关键词
Arabidopsis; elongation defective 1 mutant; extracellular protein; ELD1-GFP; ELD1-related genes; plant-specific proteins);
D O I
10.1023/B:PLAN.0000019067.05185.d6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coordinated cell growth and differentiation is crucial for the development of higher plants. Using the elongation defective 1-1 (eld1-1) mutant, we cloned the ELD1 gene, which encodes a serine-rich protein. Genes homologous to ELD1 can be found in plants, including Arabidopsis, rice, and tobacco, but not in other organisms. Using reverse genetics, we identified a new allele, eld1-2, which is phenotypically indistinguishable from eld1-1, but does not produce a detectable ELD1 transcript. The ELD1 gene sequence is the same as that of the KOBITO1 sequence. However, the kob1 mutants display weak phenotype relative to the two eld1 mutants, which are likely null alleles. KOB1 was reported to be a membrane protein involved in cellulose synthesis. However, based on ELD1-GFP localization in plasmolyzed cells, we found that ELD1 is localized to the cell wall/extracellular matrix, rather than the membrane. Thus, ELD1/KOB1 is a secreted protein involved in promoting cell growth. To investigate the relationship between ELD1 and Arabidopsis genes with high sequence similarity, we analyzed the possible subcellular location of their proteins as well as their amino acid sequence. The ELD1-related proteins in Arabidopsis were predicted to be localized to subcellular compartments different from that of ELD1. Thus, ELD1 is likely to be functionally distinct from related Arabidopsis genes. These results suggest that ELD1 is a single-copy gene which belongs to a small family of plant-specific genes with diverse function.
引用
收藏
页码:581 / 595
页数:15
相关论文
共 38 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis [J].
Aubert, D ;
Chen, LJ ;
Moon, YH ;
Martin, D ;
Castle, LA ;
Yang, CH ;
Sung, ZR .
PLANT CELL, 2001, 13 (08) :1865-1875
[3]   An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation [J].
Azpiroz, R ;
Wu, YW ;
LoCascio, JC ;
Feldmann, KA .
PLANT CELL, 1998, 10 (02) :219-230
[4]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[5]   Plant cell wall proteins [J].
Cassab, GI .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :281-309
[6]  
Chang S. J., 1993, Plant Molecular Biology Reporter, V11, P113, DOI 10.1007/BF02670468
[7]  
CHEN H, 1994, BIOTECHNIQUES, V16, P664
[8]   The role of the Arabidopsis ELD1 gene in cell development and photomorphogenesis in darkness [J].
Cheng, JC ;
Lertpiriyapong, K ;
Wang, S ;
Sung, ZR .
PLANT PHYSIOLOGY, 2000, 123 (02) :509-520
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development [J].
Clouse, SD ;
Langford, M ;
McMorris, TC .
PLANT PHYSIOLOGY, 1996, 111 (03) :671-678