Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation

被引:223
作者
Miocinovic, Svjetlana
Parent, Martin
Butson, Christopher R.
Hahn, Philip J.
Russo, Gary S.
Vitek, Jerrold L.
McIntyre, Cameron C.
机构
[1] Cleveland Clin Fdn, Dept Biomed Engn, Cleveland, OH 44195 USA
[2] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[3] Univ Laval, Ctr Rech, Beauport, PQ, Canada
[4] Cleveland Clin Fdn, Dept Neurosci, Cleveland, OH 44195 USA
关键词
D O I
10.1152/jn.00305.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The subthalamic nucleus ( STN) is the most common target for the treatment of Parkinson's disease ( PD) with deep brain stimulation ( DBS). DBS of the globus pallidus internus ( GPi) is also effective in the treatment of PD. The output fibers of the GPi that form the lenticular fasciculus pass in close proximity to STN DBS electrodes. In turn, both STN projection neurons and GPi fibers of passage represent possible therapeutic targets of DBS in the STN region. We built a comprehensive computational model of STN DBS in parkinsonian macaques to study the effects of stimulation in a controlled environment. The model consisted of three fundamental components: 1) a three-dimensional ( 3D) anatomical model of the macaque basal ganglia, 2) a finite element model of the DBS electrode and electric field transmitted to the tissue medium, and 3) multicompartment biophysical models of STN projection neurons, GPi fibers of passage, and internal capsule fibers of passage. Populations of neurons were positioned within the 3D anatomical model. Neurons were stimulated with electrode positions and stimulation parameters defined as clinically effective in two parkinsonian monkeys. The model predicted axonal activation of STN neurons and GPi fibers during STN DBS. Model predictions regarding the degree of GPi fiber activation matched well with experimental recordings in both monkeys. Only axonal activation of the STN neurons showed a statistically significant increase in both monkeys when comparing clinically effective and ineffective stimulation. Nonetheless, both neural targets may play important roles in the therapeutic mechanisms of STN DBS.
引用
收藏
页码:1569 / 1580
页数:12
相关论文
共 69 条
[1]   Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest [J].
Anderson, TR ;
Hu, B ;
Iremonger, K ;
Kiss, ZHT .
JOURNAL OF NEUROSCIENCE, 2006, 26 (03) :841-850
[2]  
BALDISSE.F, 1972, EXP BRAIN RES, V15, P151
[3]   Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation [J].
Bar-Gad, I ;
Elias, S ;
Vaadia, E ;
Bergman, H .
JOURNAL OF NEUROSCIENCE, 2004, 24 (33) :7410-7419
[4]   High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons [J].
Beurrier, C ;
Bioulac, B ;
Audin, J ;
Hammond, C .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (04) :1351-1356
[5]   Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode [J].
Beurrier, C ;
Congar, P ;
Bioulac, B ;
Hammond, C .
JOURNAL OF NEUROSCIENCE, 1999, 19 (02) :599-609
[6]   Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons [J].
Bevan, MD ;
Wilson, CJ .
JOURNAL OF NEUROSCIENCE, 1999, 19 (17) :7617-7628
[7]  
BOOKSTEIN FL, 1990, 3 DIMENSIONAL NEUROI
[8]  
Burchiel KJ, 1999, NEUROSURGERY, V45, P1375, DOI 10.1097/00006123-199912000-00024
[9]   Sources and effects of electrode impedance during deep brain stimulation [J].
Butson, CR ;
Maks, CB ;
McIntyre, CC .
CLINICAL NEUROPHYSIOLOGY, 2006, 117 (02) :447-454
[10]   Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation [J].
Butson, CR ;
McIntyre, CC .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (10) :2490-2500