Non-perturbative renormalization group analysis in quantum mechanics

被引:13
作者
Aoki, KI [1 ]
Horikoshi, A [1 ]
Taniguchi, M [1 ]
Terao, H [1 ]
机构
[1] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2002年 / 108卷 / 03期
关键词
D O I
10.1143/PTP.108.571
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze quantum mechanical systems using the non-perturbative renormalization group (NPRG). The NPRG method enables us to calculate quantum corrections systematically and is very effective for studying non-perturbative dynamics. We start with anharmonic oscillators and proceed to asymmetric double well potentials, supersymmetric quantum mechanics and many particle systems.
引用
收藏
页码:571 / 590
页数:20
相关论文
共 39 条
[1]  
[Anonymous], 1990, LARGE ORDER BEHAV PE
[2]  
Aoki KI, 1998, PROG THEOR PHYS SUPP, P129, DOI 10.1143/PTPS.131.129
[3]   Rapidly converging truncation scheme of the exact renormalization group [J].
Aoki, KI ;
Morikawa, K ;
Souma, W ;
Sumi, JI ;
Terao, H .
PROGRESS OF THEORETICAL PHYSICS, 1998, 99 (03) :451-466
[4]   Introduction to the non-perturbative renormalization group and its recent applications [J].
Aoki, KI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (12-13) :1249-1326
[5]  
AOKI KI, UNPUB
[6]  
AOKI KI, 1999, EXACT RENORMALIZATIO, P194
[7]  
Aoyama H, 1997, PROG THEOR PHYS SUPP, P1, DOI 10.1143/PTPS.127.1
[8]   Valleys in quantum mechanics [J].
Aoyama, H ;
Kikuchi, H ;
Okouchi, I ;
Sato, M ;
Wada, S .
PHYSICS LETTERS B, 1998, 424 (1-2) :93-100
[9]   Valley views: instantons, large order behaviors, and supersymmetry [J].
Aoyama, H ;
Kikuchi, H ;
Okouchi, I ;
Sato, M ;
Wada, S .
NUCLEAR PHYSICS B, 1999, 553 (03) :644-710
[10]  
AOYAMA H, COMMUNICATION