Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries

被引:60
作者
Tan, Jinli [1 ]
Liu, Li [1 ]
Hu, Hai [1 ]
Yang, Zhenhua [1 ]
Guo, Haipeng [1 ]
Wei, Qiliang [1 ]
Yi, Xin [1 ]
Yan, Zichao [1 ]
Zhou, Qian [1 ]
Huang, Zhifeng [1 ]
Shu, Hongbo [1 ]
Yang, Xiukang [1 ]
Wang, Xianyou [1 ]
机构
[1] Xiangtan Univ, Minist Educ, Key Lab Environm Friendly Chem & Applicat, Sch Chem, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助;
关键词
Hollow prism/cylinder; Iron fluorides; Cathode materials; Lithium ion batteries; METAL FLUORIDES; HIGH-ENERGY; FEF3; LI; ELECTRODES; STORAGE; NANOSTRUCTURES; NANOMATERIALS; NANOCRYSTALS; NANOSPHERES;
D O I
10.1016/j.jpowsour.2013.11.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hollow prismatic/cylindric iron fluoride with a wall thickness of 0.1-0.5 mu m and a length of 1-3 mu m has been synthesized by a simple and mild solvothermal method. This compound with a mixed crystal structure of FeF3 center dot 3H(2)O and FeF3 center dot 0.33H(2)O, has an initial discharge capacities of 106.7 mAh g(-1) and a capacity retention of 60% after 100 cycles at the rate of 0.5C (1 C is 237 mA g(-1)) in the voltage of 2.0-4.5 V. To overcome the poor electronic conductivity of fluorides, the as-prepared iron fluoride has been ball-milled with 15 wt.% acetylene black (AB) and heat-treated to obtain FeF3 center dot 0.33H(2)O/C nanocomposites. The nanocomposites deliver discharge capacity of 160.2 mAh g(-1) at the rate of 0.5C. Even at the high rate of 5 C, the initial discharge capacity is still as high as 137.5 mAh g(-1). The capacity retentions reach up to 85.0% and 75.7% after 100 cycles at 0.5 C and 5 C, respectively. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 38 条
[1]   Cathode performance and voltage estimation of metal trihalides [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :716-719
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J].
Badway, F ;
Cosandey, F ;
Pereira, N ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1318-A1327
[4]   Solvothermal synthesis and characterization of Pd-Rh alloy hollow nanosphere catalysts for formic acid oxidation [J].
Bai, Zhengyu ;
Yang, Lin ;
Zhang, Jiangshan ;
Li, Lei ;
Lv, Jing ;
Hu, Chuangang ;
Zhou, Jianguo .
CATALYSIS COMMUNICATIONS, 2010, 11 (10) :919-922
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Determination of electrochemical active area of porous Li1-δCoO2 electrode using the GITT technique [J].
Choi, YM ;
Pyun, SI .
SOLID STATE IONICS, 1998, 109 (1-2) :159-163
[7]   Reduced graphene oxide decorated with FeF3 nanoparticles: Facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries [J].
Chu, Qingxin ;
Xing, Zhicai ;
Ren, Xinbang ;
Asiri, Abdullah M. ;
Al-Youbi, Abdulrahman O. ;
Alamry, Khalid Ahmad ;
Sun, Xuping .
ELECTROCHIMICA ACTA, 2013, 111 :80-85
[8]   Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries [J].
Chu, Qingxin ;
Xing, Zhicai ;
Tian, Jingqi ;
Ren, Xinbang ;
Asiri, Abdullah M. ;
Al-Youbi, Abdulrahman O. ;
Alamry, Khalid Ahmad ;
Sun, Xuping .
JOURNAL OF POWER SOURCES, 2013, 236 :188-191
[9]   Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries [J].
Devaraju, Murukanahally Kempaiah ;
Honma, Itaru .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :284-297
[10]   Determination of the diffusion coefficient of lithium ions in nano-Si [J].
Ding, N. ;
Xu, J. ;
Yao, Y. X. ;
Wegner, G. ;
Fang, X. ;
Chen, C. H. ;
Lieberwirth, I. .
SOLID STATE IONICS, 2009, 180 (2-3) :222-225