Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance

被引:161
作者
Chen, Shuangqiang [1 ]
Bao, Peite [2 ]
Huang, Xiaodan [1 ]
Sun, Bing [1 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Sch Chem & Forens Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[2] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
silicon anode; graphene foam; chemical vapor deposition; lithium ion battery; ANODE MATERIALS; NEGATIVE ELECTRODES; NANOTUBE; STORAGE; NANOPARTICLES; NANOCOMPOSITES; ARCHITECTURE; ULTRALIGHT; DEPOSITION; AEROGELS;
D O I
10.1007/s12274-013-0374-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge and discharge result in pulverization of Si electrodes and fast capacity loss on cycling. This drawback of Si electrodes can be overcome by combination with well-organized graphene foam. In this work, hierarchical three-dimensional carbon-coated mesoporous Si nanospheres@graphene foam (C@Si@GF) nanoarchitectures were successfully synthesized by a thermal bubble ejection assisted chemical-vapor-deposition and magnesiothermic reduction method. The morphology and structure of the as-prepared nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. When employed as anode materials in lithium ion batteries, C@Si@GF nanocomposites exhibited superior electrochemical performance including a high specific capacity of 1,200 mAh/g at the current density of 1 A/g, excellent high rate capabilities and an outstanding cyclability. Post-mortem analyses identified that the morphology of 3D C@Si@GF electrodes after 200 cycles was well maintained. The synergistic effects arising from the combination of mesoporous Si nanospheres and graphene foam nanoarchitectures may address the intractable pulverization problem of Si electrode.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 56 条
[1]   Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J].
Bao, Zhihao ;
Weatherspoon, Michael R. ;
Shian, Samuel ;
Cai, Ye ;
Graham, Phillip D. ;
Allan, Shawn M. ;
Ahmad, Gul ;
Dickerson, Matthew B. ;
Church, Benjamin C. ;
Kang, Zhitao ;
Abernathy, Harry W., III ;
Summers, Christopher J. ;
Liu, Meilin ;
Sandhage, Kenneth H. .
NATURE, 2007, 446 (7132) :172-175
[2]   Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles [J].
Chen, Dongyun ;
Mei, Xiao ;
Ji, Ge ;
Lu, Meihua ;
Xie, Jianping ;
Lu, Jianmei ;
Lee, Jim Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (10) :2409-2413
[3]   Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries [J].
Chen, Po-Chiang ;
Xu, Jing ;
Chen, Haitian ;
Zhou, Chongwu .
NANO RESEARCH, 2011, 4 (03) :290-296
[4]   Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J].
Chen, Shuang Qiang ;
Wang, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9735-9739
[5]   Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries [J].
Chen, Shuangqiang ;
Bao, Peite ;
Xiao, Linda ;
Wang, Guoxiu .
CARBON, 2013, 64 :158-169
[6]   Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage [J].
Chen, Shuangqiang ;
Bao, Peite ;
Wang, Guoxiu .
NANO ENERGY, 2013, 2 (03) :425-434
[7]   Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries [J].
Chen, Shuangqiang ;
Chen, Peng ;
Wu, Minghong ;
Pan, Dengyu ;
Wang, Yong .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1302-1306
[8]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[9]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[10]   Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Choi, Jang Wook ;
Cui, Yi .
ACS NANO, 2010, 4 (07) :3671-3678