Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis

被引:282
作者
Blumer, C [1 ]
Haas, D [1 ]
机构
[1] Univ Lausanne, Lab Biol Microbienne, CH-1015 Lausanne, Switzerland
关键词
hydrogen cyanide; hydrogen cyanide synthase; opine oxidase; anaerobic control; iron regulation; Pseudomonas fluorescens; Pseudomonas;
D O I
10.1007/s002039900127
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 64 条
[1]  
[Anonymous], [No title captured]
[2]   Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes:: Effect on radishes (Raphanus sativus L.) [J].
Antoun, H ;
Beauchamp, CJ ;
Goussard, N ;
Chabot, R ;
Lalande, R .
PLANT AND SOIL, 1998, 204 (01) :57-67
[3]   CYANIDE PRODUCTION BY PSEUDOMONAS-FLUORESCENS AND PSEUDOMONAS-AERUGINOSA [J].
ASKELAND, RA ;
MORRISON, SM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1983, 45 (06) :1802-1807
[4]   Transcriptional regulation of Nostoc uptake hydrogenase [J].
Axelsson, R ;
Oxelfelt, F ;
Lindblad, P .
FEMS MICROBIOLOGY LETTERS, 1999, 170 (01) :77-81
[5]   MICROBIAL CYANIDE PRODUCTION IN THE RHIZOSPHERE IN RELATION TO POTATO YIELD REDUCTION AND PSEUDOMONAS SPP-MEDIATED PLANT GROWTH-STIMULATION [J].
BAKKER, AW ;
SCHIPPERS, B .
SOIL BIOLOGY & BIOCHEMISTRY, 1987, 19 (04) :451-457
[6]   O-2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli [J].
Becker, S ;
Holighaus, G ;
Gabrielczyk, T ;
Unden, G .
JOURNAL OF BACTERIOLOGY, 1996, 178 (15) :4515-4521
[7]   Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites [J].
Blumer, C ;
Heeb, S ;
Pessi, G ;
Haas, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :14073-14078
[8]   BIOSYNTHESIS OF CYANIDE FROM [2-14C15]GLYCINE IN CHROMOBACTERIUM VIOLACEUM [J].
BRYSK, MM ;
LAUINGER, C ;
RESSLER, C .
BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 184 (03) :583-&
[9]  
BUNCH AW, 1982, J GEN MICROBIOL, V128, P2675
[10]   INFLUENCE OF OXYGEN ON THE PSEUDOMONAS-AERUGINOSA HYDROGEN-CYANIDE SYNTHASE [J].
CASTRIC, P .
CURRENT MICROBIOLOGY, 1994, 29 (01) :19-21