Profound contrast adaptation early in the visual pathway

被引:226
作者
Solomon, SG [1 ]
Peirce, JW [1 ]
Dhruv, NT [1 ]
Lennie, P [1 ]
机构
[1] NYU, Ctr Neural Sci, New York, NY 10003 USA
关键词
D O I
10.1016/S0896-6273(04)00178-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Prior exposure to a moving grating of high contrast led to a substantial and persistent reduction in the contrast sensitivity of neurons in the lateral geniculate nucleus (LGN) of macaque. This slow contrast adaptation was potent in all magnocellular (M) cells but essentially absent in parvocellular (P) cells and neurons that received input from S cones. Simultaneous recordings of M cells and the potentials of ganglion cells driving them showed that adaptation originated in ganglion cells. As expected from the spatiotemporal tuning of M cells, adaptation was broadly tuned for spatial frequency and lacked orientation selectivity. Adaptation could be induced by high temporal frequencies to which cortical neurons do not respond, but not by low temporal frequencies that can strongly adapt cortical neurons. Our observations confirm that contrast adaptation occurs at multiple levels in the visual system, and they provide a new way to reveal the function and perceptual significance of the M pathway.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 38 条
[1]   Fast and slow contrast adaptation in retinal circuitry [J].
Baccus, SA ;
Meister, M .
NEURON, 2002, 36 (05) :909-919
[2]   CONTRAST GAIN-CONTROL IN THE PRIMATE RETINA - P-CELLS ARE NOT X-LIKE, SOME M-CELLS ARE [J].
BENARDETE, EA ;
KAPLAN, E ;
KNIGHT, BW .
VISUAL NEUROSCIENCE, 1992, 8 (05) :483-486
[3]   The receptive field of the primate P retinal ganglion cell .2. Nonlinear dynamics [J].
Benardete, EA ;
Kaplan, E .
VISUAL NEUROSCIENCE, 1997, 14 (01) :187-205
[4]   INTERPRETATION OF EXTRACELLULAR RESPONSE OF SINGLE LATERAL GENICULATE CELLS [J].
BISHOP, PO ;
DAVIS, R ;
BURKE, W .
JOURNAL OF PHYSIOLOGY-LONDON, 1962, 162 (03) :451-&
[5]   ON EXISTENCE OF NEURONES IN HUMAN VISUAL SYSTEM SELECTIVELY SENSITIVE TO ORIENTATION AND SIZE OF RETINAL IMAGES [J].
BLAKEMORE, C ;
CAMPBELL, FW .
JOURNAL OF PHYSIOLOGY-LONDON, 1969, 203 (01) :237-+
[6]   Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells [J].
Brown, SP ;
Masland, RH .
NATURE NEUROSCIENCE, 2001, 4 (01) :44-51
[7]  
Carandini M, 1997, J NEUROSCI, V17, P8621
[8]   Pattern adaptation and cross-orientation interactions in the primary visual cortex [J].
Carandini, M ;
Movshon, JA ;
Ferster, D .
NEUROPHARMACOLOGY, 1998, 37 (4-5) :501-511
[9]   Adaptation to temporal contrast in primate and salamander retina [J].
Chander, D ;
Chichilnisky, EJ .
JOURNAL OF NEUROSCIENCE, 2001, 21 (24) :9904-9916
[10]   SPATIAL AND TEMPORAL CONTRAST SENSITIVITIES OF NEURONS IN LATERAL GENICULATE-NUCLEUS OF MACAQUE [J].
DERRINGTON, AM ;
LENNIE, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 357 (DEC) :219-240