Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface

被引:178
作者
Feng, Zhuoluo A. [1 ,2 ]
El Gabaly, Farid [3 ]
Ye, Xiaofei [4 ]
Shen, Zhi-Xun [1 ,2 ]
Chueh, William C. [2 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[3] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
美国国家科学基金会;
关键词
REDUCED SURFACES; CEO2; 111; IN-SITU; WATER; OXIDE; CEO2(111); OXIDATION; MECHANISMS; ADSORPTION; CHEMISTRY;
D O I
10.1038/ncomms5374
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical incorporation reactions are ubiquitous in energy storage and conversion devices based on mixed ionic and electronic conductors, such as lithium-ion batteries, solid-oxide fuel cells and water-splitting membranes. The two-way traffic of ions and electrons across the electrochemical interface, coupled with the bulk transport of mass and charge, has been challenging to understand. Here we report an investigation of the oxygen-ion incorporation pathway in CeO2-delta (ceria), one of the most recognized oxygen-deficient compounds, during hydrogen oxidation and water splitting. We probe the response of surface oxygen vacancies, electrons and adsorbates to the electrochemical polarization at the ceria-gas interface. We show that surface oxygen-ion transfer, mediated by oxygen vacancies, is fast. Furthermore, we infer that the electron transfer between cerium cations and hydroxyl ions is the rate-determining step. Our in operando observations reveal the precise roles of surface oxygen vacancy and electron defects in determining the rate of surface incorporation reactions.
引用
收藏
页数:9
相关论文
共 57 条
[1]  
[Anonymous], 2004, Physical Chemistry of Ionic Materials
[2]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[3]   Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics [J].
Bazant, Martin Z. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1144-1160
[4]   Photoelectron spectroscopy of surfaces under humid conditions [J].
Bluhm, Hendrik .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2010, 177 (2-3) :71-84
[5]  
Bockris J. O. M., 2000, MODERN ELECTROCHEMIS, DOI DOI 10.1016/j.cattod.2012.08.013
[6]   Reactivity of Hydroxyls and Water on a CeO2(111) Thin Film Surface: The Role of Oxygen Vacancy [J].
Chen, Bohao ;
Ma, Yunsheng ;
Ding, Liangbing ;
Xu, Lingshun ;
Wu, Zongfang ;
Yuan, Qing ;
Huang, Weixin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (11) :5800-5810
[7]   A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2 [J].
Chen, Hsin-Tsung ;
Choi, Yong Man ;
Liu, Meilin ;
Lin, M. C. .
CHEMPHYSCHEM, 2007, 8 (06) :849-855
[8]   Electrochemistry of Mixed Oxygen Ion and Electron Conducting Electrodes in Solid Electrolyte Cells [J].
Chueh, William C. ;
Haile, Sossina M. .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 3, 2012, 3 :313-341
[9]   Highly Enhanced Concentration and Stability of Reactive Ce3+ on Doped CeO2 Surface Revealed In Operando [J].
Chueh, William C. ;
McDaniel, Anthony H. ;
Grass, Michael E. ;
Hao, Yong ;
Jabeen, Naila ;
Liu, Zhi ;
Haile, Sossina M. ;
McCarty, Kevin F. ;
Bluhm, Hendrik ;
El Gabaly, Farid .
CHEMISTRY OF MATERIALS, 2012, 24 (10) :1876-1882
[10]  
Chueh WC, 2012, NAT MATER, V11, P155, DOI [10.1038/NMAT3184, 10.1038/nmat3184]