Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates

被引:72
作者
Hosea, NA
Radic, Z
Tsigelny, I
Berman, HA
Quinn, DM
Taylor, P
机构
[1] SUNY BUFFALO,DEPT BIOCHEM PHARMACOL,BUFFALO,NY 14260
[2] UNIV CALIF SAN DIEGO,DEPT PHARMACOL,LA JOLLA,CA 92093
[3] UNIV IOWA,DEPT CHEM,IOWA CITY,IA 52242
关键词
D O I
10.1021/bi9611220
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Through site-specific mutagenesis, we examined the determinants on acetylcholinesterase which govern the specificity and reactivity of three classes of substrates: enantiomeric alkyl phosphonates, trifluoromethyl acetophenones, and carboxyl esters. By employing cationic and uncharged pairs of enantiomeric alkyl methylphosphonyl thioates of known absolute stereochemistry, we find that an aspartate residue near the gorge entrance (D74) is responsible for the enhanced reactivity of the cationic organophosphonates. Removal of the charge with the mutation D74N causes a near equal reduction in the reaction rate constants for the R(p) and S-p enantiomers and exerts a greater influence on the cationic organophosphonates than on the charged trimethylammonio trifluoromethyl acetophenone and acetylthiocholine. This pattern of reactivity suggests that the orientation of the leaving group for both enantiomers is directed toward the gorge exit and in apposition to Asp 74. Replacement of tryptophan 86 with alanine in the choline subsite also diminishes the reaction rates for cationic organophosphonates, although to a lesser extent than with the D74N mutation, while not affecting the reactions with the uncharged compounds. Hence, reaction with cationic OPs depends to a lesser degree on Trp 86 than on Asp 74. Docking of S, and R(p) cycloheptyl methylphosphonyl thiocholines and thioethylates in AChE as models of the reversible complex and transition state using molecular dynamics affords structural insight into the spatial arrangement of the substituents surrounding phosphorus prior to and during reaction. The leaving group of the R, and S, enantiomers, regardless of charge, is directed to the gorge exit and toward Asp 74, an orientation unique to tetrahedral ligands.
引用
收藏
页码:10995 / 11004
页数:10
相关论文
共 56 条
  • [1] [Anonymous], 1972, Enzyme inhibitors as substrates-Interactions of esterases with esters of organophosphorus and carbamic acids
  • [2] [Anonymous], [No title captured]
  • [3] AMINO-ACID-RESIDUES CONTROLLING REACTIVATION OF ORGANOPHOSPHONYL CONJUGATES OF ACETYLCHOLINESTERASE BY MONOQUATERNARY AND BISQUATERNARY OXIMES
    ASHANI, Y
    RADIC, Z
    TSIGELNY, I
    VELLOM, DC
    PICKERING, NA
    QUINN, DM
    DOCTOR, BP
    TAYLOR, P
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (11) : 6370 - 6380
  • [4] Ausubel FM., 1994, Curr. Protoc. Mol. Biol
  • [5] ALLOSTERIC MODULATION OF ACETYLCHOLINESTERASE ACTIVITY BY PERIPHERAL LIGANDS INVOLVES A CONFORMATIONAL TRANSITION OF THE ANIONIC SUBSITE
    BARAK, D
    ORDENTLICH, A
    BROMBERG, A
    KRONMAN, C
    MARCUS, D
    LAZAR, A
    ARIEL, N
    VELAN, B
    SHAFFERMAN, A
    [J]. BIOCHEMISTRY, 1995, 34 (47) : 15444 - 15452
  • [6] BARAK D, 1992, MULTIDISCIPLINARY APPROACHES TO CHOLINESTERASE FUNCTIONS, P195
  • [7] BARAK D, 1994, J BIOL CHEM, V269, P6296
  • [8] BERMAN HA, 1995, ENZYMES OF THE CHOLINESTERASE FAMILY, P177
  • [9] BERMAN HA, 1989, J BIOL CHEM, V264, P3942
  • [10] BERMAN HA, 1986, J BIOL CHEM, V261, P646