Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes

被引:414
作者
Levi, MD [1 ]
Aurbach, D [1 ]
机构
[1] BAR ILAN UNIV,DEPT CHEM,IL-52900 RAMAT GAN,ISRAEL
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1997年 / 101卷 / 23期
关键词
D O I
10.1021/jp9701911
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solid state diffusion of Lithium into graphite during electrochemical intercalation processes was investigated using potentiostatic intermittent titration (PITT) and impedance spectroscopy (EIS). The diffusion coefficient (D) as a function of the intercalation level (X) and the electrode potential (E) was calculated on the basis of both methods and gave similar results. The D vs X or E plots were found to be nonmonotonous, with three pronounced minima at the same potentials in which the cyclic voltammetry of these systems shows the peaks related to the phase transition between the Lithium-graphite intercalation stages. It was found that the critical diffusion length for these electrodes relates to the graphite particles' dimensions along their basal planes and not to the electrode thickness. The reason for the peaklike dependence of the D on X and E is discussed in light of the nature of the intercalation processes.
引用
收藏
页码:4641 / 4647
页数:7
相关论文
共 32 条