Graphene-based macroscopic assemblies and architectures: an emerging material system

被引:413
作者
Cong, Huai-Ping [1 ,2 ]
Chen, Jia-Fu [1 ]
Yu, Shu-Hong [1 ]
机构
[1] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei Natl Lab Phys Sci Microscale, Div Nanomat & Chem,Dept Chem, Anhua 230026, Peoples R China
[2] Hefei Univ Technol, Sch Chem & Chem Engn, Anhui Key Lab Controllable Chem React & Mat Chem, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
TRANSPARENT CONDUCTIVE FILMS; HIGH-PERFORMANCE SUPERCAPACITOR; DOUBLE-NETWORK HYDROGELS; ULTRATHIN-GRAPHITE FOAM; CVD-GROWN GRAPHENE; FEW-LAYER GRAPHENE; REDUCED GRAPHENE; CARBON NANOTUBE; HIGHLY EFFICIENT; DOPED GRAPHENE;
D O I
10.1039/c4cs00181h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to the outstanding physicochemical properties arising from its truly two-dimensional (2D) planar structure with a single-atom thickness, graphene exhibits great potential for use in sensors, catalysts, electrodes, and in biological applications, etc. With further developments in the theoretical understanding and assembly techniques, graphene should enable great changes both in scientific research and practical industrial applications. By the look of development, it is of fundamental and practical significance to translate the novel physical and chemical properties of individual graphene nanosheets into the macroscale by the assembly of graphene building blocks into macroscopic architectures with structural specialities and functional novelties. The combined features of a 2D planar structure and abundant functional groups of graphene oxide (GO) should provide great possibilities for the assembly of GO nanosheets into macroscopic architectures with different macroscaled shapes through various assembly techniques under different bonding interactions. Moreover, macroscopic graphene frameworks can be used as ideal scaffolds for the incorporation of functional materials to offset the shortage of pure graphene in the specific desired functionality. The advantages of light weight, supra-flexibility, large surface area, tough mechanical strength, and high electrical conductivity guarantee graphene-based architectures wide application fields. This critical review mainly addresses recent advances in the design and fabrication of graphene-based macroscopic assemblies and architectures and their potential applications. Herein, we first provide overviews of the functional macroscopic graphene materials from three aspects, i.e., 1D graphene fibers/ribbons, 2D graphene films/papers, 3D network-structured graphene monoliths, and their composite counterparts with either polymers or nano-objects. Then, we present the promising potential applications of graphene-based macroscopic assemblies in the fields of electronic and optoelectronic devices, sensors, electrochemical energy devices, and in water treatment. Last, the personal conclusions and perspectives for this intriguing field are given.
引用
收藏
页码:7295 / 7325
页数:31
相关论文
共 330 条
[1]   Controllable pore size of three dimensional self-assembled foam-like graphene and its wettability [J].
Ahn, Ho Seon ;
Kim, Hyungmo ;
Kim, Ji Min ;
Park, Su Cheong ;
Kim, Jin Man ;
Kim, Joonwon ;
Kim, Moo Hwan .
CARBON, 2013, 64 :27-34
[2]   A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling [J].
Ahn, Ho Seon ;
Kim, Ji Min ;
Park, Chibeom ;
Jang, Ji-Wook ;
Lee, Jae Sung ;
Kim, Hyungdae ;
Kaviany, Massoud ;
Kim, Moo Hwan .
SCIENTIFIC REPORTS, 2013, 3
[3]   Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling [J].
Ahn, Ho Seon ;
Jo, Hang Jin ;
Kang, Soon Ho ;
Kim, Moo Hwan .
APPLIED PHYSICS LETTERS, 2011, 98 (07)
[4]   Self-healing hydrogels formed in catanionic surfactant solutions [J].
Akay, Gizem ;
Hassan-Raeisi, Azadeh ;
Tuncaboylu, Deniz C. ;
Orakdogen, Nermin ;
Abdurrahmanoglu, Suzan ;
Oppermann, Wilhelm ;
Okay, Oguz .
SOFT MATTER, 2013, 9 (07) :2254-2261
[5]   Polymers through Reshuffling of Trithiocarbonate Units [J].
Amamoto, Yoshifumi ;
Kamada, Jun ;
Otsuka, Hideyuki ;
Takahara, Atsushi ;
Matyjaszewski, Krzysztof .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1660-1663
[6]   Electrophoretic adhesion of biodegradable hydrogels through the intermediary of oppositely charged polyelectrolytes [J].
Asoh, Taka-Aki ;
Kawai, Wataru ;
Kikuchi, Akihiko .
SOFT MATTER, 2012, 8 (06) :1923-1927
[7]   Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications [J].
Bae, Sang-Hoon ;
Kahya, Orhan ;
Sharma, Bhupendra K. ;
Kwon, Junggou ;
Cho, Hyoung J. ;
Ozyilmaz, Barbaros ;
Ahn, Jong-Hyun .
ACS NANO, 2013, 7 (04) :3130-3138
[8]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[9]   On the Gelation of Graphene Oxide [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5545-5551
[10]  
Behabtu N, 2010, NAT NANOTECHNOL, V5, P406, DOI [10.1038/NNANO.2010.86, 10.1038/nnano.2010.86]