Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element

被引:198
作者
Knight, H
Zarka, DG
Okamoto, H
Thomashow, ME
Knight, MR
机构
[1] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
[2] Michigan State Univ, Dept Energy, Res Lab, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA
关键词
D O I
10.1104/pp.104.043562
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Many cold-regulated genes of Arabidopsis are inducible by abscisic acid (ABA) as well as by cold. This has been thought to occur via two separate signaling pathways, with ABA acting via ABA-responsive promoter elements and low temperature activating the C-repeat element (CRT, dehydration-responsive) promoter element via CBF (DREB1) transcription factors. We show here that ABA is also capable of activating the CRT promoter element. Although the more recently discovered ABA-inducible CBF4 transcription factor might have accounted for this, we show here that CBF1-3 transcript levels also increase in response to elevated ABA levels. This increase in CBF1-3 transcript levels appears to be at least in part due to increased activity of the CBF promoters in response to ABA. A total of 125 bp of the CBF2 promoter, which has previously been shown to be sufficient for cold-, mechanical-, and cycloheximide-induced expression, was also sufficient for ABA-induced expression. However, the ABA-responsive promoter element-like motif within this region is not needed for ABA-induced expression. An observed increase in CBF protein levels after ABA treatment, together with previous data showing that increased CBF levels are sufficient for cold-regulated gene induction, suggests that ABA-induced increases in CBF1-3 transcript levels do have the potential to activate the CRT. Our data indicate therefore that activation of the CRT may also occur via a novel ABA-inducible signaling pathway using the normally cold-inducible CBFs.
引用
收藏
页码:1710 / 1717
页数:8
相关论文
共 45 条
  • [1] Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling
    Abe, H
    Urao, T
    Ito, T
    Seki, M
    Shinozaki, K
    Yamaguchi-Shinozaki, K
    [J]. PLANT CELL, 2003, 15 (01) : 63 - 78
  • [2] Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression
    Abe, H
    YamaguchiShinozaki, K
    Urao, T
    Iwasaki, T
    Hosokawa, D
    Shinozaki, K
    [J]. PLANT CELL, 1997, 9 (10) : 1859 - 1868
  • [3] THE 5'-REGION OF ARABIDOPSIS-THALIANA COR15A HAS CIS-ACTING ELEMENTS THAT CONFER COLD-REGULATED, DROUGHT-REGULATED AND ABA-REGULATED GENE-EXPRESSION
    BAKER, SS
    WILHELM, KS
    THOMASHOW, MF
    [J]. PLANT MOLECULAR BIOLOGY, 1994, 24 (05) : 701 - 713
  • [4] BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION
    BEVAN, M
    [J]. NUCLEIC ACIDS RESEARCH, 1984, 12 (22) : 8711 - 8721
  • [5] The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress
    Boyce, JM
    Knight, H
    Deyholos, M
    Openshaw, MR
    Galbraith, DW
    Warren, G
    Knight, MR
    [J]. PLANT JOURNAL, 2003, 34 (04) : 395 - 406
  • [6] Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize
    Busk, PK
    Jensen, AB
    Pages, M
    [J]. PLANT JOURNAL, 1997, 11 (06) : 1285 - 1295
  • [7] Regulation of abscisic acid-induced transcription
    Busk, PK
    Pagès, M
    [J]. PLANT MOLECULAR BIOLOGY, 1998, 37 (03) : 425 - 435
  • [8] ABFs, a family of ABA-responsive element binding factors
    Choi, HI
    Hong, JH
    Ha, JO
    Kang, JY
    Kim, SY
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) : 1723 - 1730
  • [9] Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
    Clough, SJ
    Bent, AF
    [J]. PLANT JOURNAL, 1998, 16 (06) : 735 - 743
  • [10] Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation
    Gilmour, SJ
    Sebolt, AM
    Salazar, MP
    Everard, JD
    Thomashow, MF
    [J]. PLANT PHYSIOLOGY, 2000, 124 (04) : 1854 - 1865