SEMINT: A tool for identifying attribute correspondences in heterogeneous databases using neural networks

被引:164
作者
Li, WS
Clifton, C
机构
[1] NEC USA Inc, C&C Res Labs, San Jose, CA 95134 USA
[2] Mitre Corp, Bedford, MA 01730 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
heterogeneous databases; database integration; attribute correspondence identification; neural networks;
D O I
10.1016/S0169-023X(99)00044-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One step in interoperating among heterogeneous databases is semantic integration: Identifying relationships between attributes or classes in different database schemas. SEMantic INTegrator (SEMINT) is a tool based on neural networks to assist in identifying attribute correspondences in heterogeneous databases. SEMINT supports access to a variety of database systems and utilizes both schema information and data contents to produce rules for matching corresponding attributes automatically. This paper provides theoretical background and implementation details of SEMINT. Experimental results from large and complex real databases are presented. We discuss the effectiveness of SEMINT and our experiences with attribute correspondence identification in various environments. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 84
页数:36
相关论文
共 46 条
[1]  
BENKLEY SS, 1995, 95B0000147 MTR MITRE
[2]  
CHEN HC, 1995, J AM SOC INFORM SCI, V46, P194, DOI 10.1002/(SICI)1097-4571(199504)46:3<194::AID-ASI4>3.0.CO
[3]  
2-S
[4]  
CLIFTON C, 1995, IEEE 10 KNOWL BAS SO
[5]   RESOURCE INTEGRATION USING A LARGE KNOWLEDGE BASE IN CARNOT [J].
COLLET, C ;
HUHNS, MN ;
SHEN, WM .
COMPUTER, 1991, 24 (12) :55-62
[6]  
CYC DBL, 1995, COMMUN ACM NOV, P33
[7]  
DREW P, 1993, SIGMOD RECORD SEP, P47
[8]  
Fahlman S.E., 1988, Proceedings of the 1988 Connectionist Models Summer School, P38
[9]  
FISHER DH, 1989, P 11 INT JOINT C ART, P788
[10]  
GRANT J, 1993, VLDB J, V2, P153