Implications for viral capsid assembly from crystal structures of HIV-1 Gag1-278 and CAN133-278

被引:56
作者
Kelly, Brian N.
Howard, Bruce R.
Wang, Hui
Robinson, Howard
Sundquist, Wesley I. [1 ]
Hill, Christopher P.
机构
[1] Univ Utah, Dept Biochem, Salt Lake City, UT 84112 USA
[2] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA
关键词
D O I
10.1021/bi060927x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gag, the major structural protein of retroviruses such as HIV-1, comprises a series of domains connected by flexible linkers. These domains drive viral assembly by mediating multiple interactions between adjacent Gag molecules and by binding to viral genomic RNA and host cell membranes. Upon viral budding, Gag is processed by the viral protease to liberate distinct domains as separate proteins. The first two regions of Gag are MA, a membrane-binding module, and CA, which is a two-domain protein that makes important Gag-Gag interactions, forms the cone-shaped outer shell of the core (the capsid) in the mature HIV-1 particle, and makes an important interaction with the cellular protein cyclophilin A (CypA). Here, we report crystal structures of the mature CA N-terminal domain (CA(133)(N)-(278)) and a MA-CA(N) fusion (Gag(1-278)) at resolutions/R-free values of 1.9 angstrom/25.7% and 2.2 angstrom/25.8%, respectively. Consistent with earlier studies, a comparison of these structures indicates that processing at the MA-CA junction causes CA to adopt an N-terminal, beta-hairpin conformation that seems to be required for capsid morphology and viral infectivity. In contrast with an NMR study (Tang, C., et al. (2002) Nat. Struct. Biol. 9, 537-543), structural overlap reveals only small relative displacements for helix 6, which is located between the, beta-hairpin and the CypA-binding loop. These observations argue against the proposal that CypA binding is coupled with, beta-hairpin formation and support an earlier surface plasmon resonance study (Yoo, S., et al. (1997) J. Mol. Biol. 269, 780-795), which concluded that, beta-hairpin formation and CypA-binding are energetically independent events.
引用
收藏
页码:11257 / 11266
页数:10
相关论文
共 68 条
[1]   Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins [J].
Aberham, C ;
Weber, S ;
Phares, W .
JOURNAL OF VIROLOGY, 1996, 70 (06) :3536-3544
[2]  
[Anonymous], ACTA CRYSTALLOGR D
[3]   Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography [J].
Benjamin, J ;
Ganser-Pornillos, BK ;
Tivol, WF ;
Sundquist, WI ;
Jensen, GJ .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 346 (02) :577-588
[4]   Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab [J].
Berthet-Colominas, C ;
Monaco, S ;
Novelli, A ;
Sibaï, G ;
Mallet, F ;
Cusack, S .
EMBO JOURNAL, 1999, 18 (05) :1124-1136
[5]   Cyclophilin A is required for TRIM5α-mediated resistance to HIV-1 in old world monkey cells [J].
Berthoux, L ;
Sebastian, S ;
Sokolskaja, E ;
Luban, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (41) :14849-14853
[6]   Catalysis and binding of cyclophilin a with different HIV-1 capsid constructs [J].
Bosco, DA ;
Kern, D .
BIOCHEMISTRY, 2004, 43 (20) :6110-6119
[7]   Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A [J].
Bosco, DA ;
Eisenmesser, EZ ;
Pochapsky, S ;
Sundquist, WI ;
Kern, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5247-5252
[8]   Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription [J].
Braaten, D ;
Franke, EK ;
Luban, J .
JOURNAL OF VIROLOGY, 1996, 70 (06) :3551-3560
[9]   Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A [J].
Braaten, D ;
Aberham, C ;
Franke, EK ;
Yin, L ;
Phares, W ;
Luban, J .
JOURNAL OF VIROLOGY, 1996, 70 (08) :5170-5176
[10]   The stoichiometry of Gag protein in HIV-1 [J].
Briggs, JAG ;
Simon, MN ;
Gross, I ;
Kräusslich, HG ;
Fuller, SD ;
Vogt, VM ;
Johnson, MC .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (07) :672-675