Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier

被引:115
作者
Berezowski, V
Landry, C
Dehouck, MP
Cecchelli, R
Fenart, L
机构
[1] Cellial Technol, Fac Sci Jean Perrin, F-62303 Lens, France
[2] Univ Artois, Fac Jean Perrin, Unite Mixte Inst Pasteur Lille, Lab Physiopathol Barriere Hemato Encephal, Lens, France
关键词
blood-brain barrier; P-glycoprotein; multidrug resistance-associated protein; endothelial cell; glial cell; pericyte;
D O I
10.1016/j.brainres.2004.05.092
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
P-glycoprotein (P-gp) and the multidrug resistance-associated proteins (MRP), whose expression is associated with multidrug resistance, have been recently located in the brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB), without taking into account a possible influence or contribution of glial cells and pericytes. Using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), the present study analysed the transcriptional expression of P-gp and the seven homologues of MRP transporters in BCECs in solo culture or in an in vitro model of the BBB consisting of a co-culture of BCECs and glial cells. Pericytes, glial cells, isolated brain capillaries and bovine grey matter extracts were also tested. P-gp mRNA, absent in glial cells, was found in brain capillaries and in co-cultured BCECs with an increased signal compared to the in solo culture. No amplification was observed in pericytes or grey matter. While MRP2, MRP3 and MRP7 remained undetected, MRP1, absent in capillaries or grey matter, was amplified in BCECs, glial cells and pericytes. MRP4 gave a low signal in most cultures. MRP5 was ubiquitously expressed, displaying a potent signal in all conditions. In spite of its presence in cultured glial cells, MRP6 mRNA expression appeared to be restricted to BCECs, with the same upregulation in the cocultured condition as observed with P-gp. Moreover, MPP6 was the only transporter whose endothelial mRNA expression was influenced by the presence of pericytes. The tissue distribution of the expression of these transporters and the contribution of the different cell populations are discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 41 条
[1]   ASTROCYTE-MEDIATED INDUCTION OF TIGHT JUNCTIONS IN BRAIN CAPILLARY ENDOTHELIUM - AN EFFICIENT INVITRO MODEL [J].
ARTHUR, FE ;
SHIVERS, RR ;
BOWMAN, PD .
DEVELOPMENTAL BRAIN RESEARCH, 1987, 36 (01) :155-159
[2]  
Balabanov R, 1998, J NEUROSCI RES, V53, P637, DOI 10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO
[3]  
2-6
[4]   Multidrug resistance-associated protein: A protein distinct from p-glycoprotein involved in cytotoxic drug expulsion [J].
Barrand, MA ;
Bagrij, T ;
Neo, SY .
GENERAL PHARMACOLOGY, 1997, 28 (05) :639-645
[5]   Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers [J].
Batrakova, EV ;
Li, S ;
Miller, DW ;
Kabanov, AV .
PHARMACEUTICAL RESEARCH, 1999, 16 (09) :1366-1372
[6]  
BEAULIEU E, 1997, BIOCHEM J, V326, P301
[7]   POLARITY OF THE BLOOD-BRAIN-BARRIER - DISTRIBUTION OF ENZYMES BETWEEN THE LUMINAL AND ANTILUMINAL MEMBRANES OF BRAIN CAPILLARY ENDOTHELIAL-CELLS [J].
BETZ, AL ;
FIRTH, JA ;
GOLDSTEIN, GW .
BRAIN RESEARCH, 1980, 192 (01) :17-28
[8]   In vitro model for evaluating drug transport across the blood-brain barrier [J].
Cecchelli, R ;
Dehouck, B ;
Descamps, L ;
Fenart, L ;
Buée-Scherrer, V ;
Duhem, C ;
Lundquist, S ;
Rentfel, M ;
Torpier, G ;
Dehouck, MP .
ADVANCED DRUG DELIVERY REVIEWS, 1999, 36 (2-3) :165-178
[9]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[10]  
Declèves X, 2000, J NEUROSCI RES, V60, P594, DOI 10.1002/(SICI)1097-4547(20000601)60:5<594::AID-JNR4>3.0.CO