MEMORYLESS RULES FOR ACHLIOPTAS PROCESSES

被引:3
作者
Beveridge, Andrew [1 ]
Bohman, Tom [2 ]
Frieze, Alan [2 ]
Pikhurko, Oleg [2 ]
机构
[1] Macalester Coll, Dept Math & Comp Sci, St Paul, MN 55105 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
Achlioptas process; memoryless; GIANT COMPONENT; PHASE-TRANSITION;
D O I
10.1137/070684148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an Achlioptas process two random pairs of {1,...,n} arrive in each round and the player has to choose one of them. We study the very restrictive version where a player's decisions cannot depend on the previous history and only one vertex from the two random edges is revealed. We prove that the player can create a giant component in (2 root 5 - 4 + o(1))n = (0.4721 ... + o(1))n rounds and that this is the best possible. On the other hand, if the player wants to delay the appearance of a giant, then the optimal bound is (1/2 + o(1))n, the same as in the Erdos-Renyi model.
引用
收藏
页码:993 / 1008
页数:16
相关论文
共 13 条
[1]  
[Anonymous], P 1 INT C UNS SOILS
[2]  
[Anonymous], 1972, BRANCHING PROCESSES
[3]   Product rule wins a competitive game [J].
Beveridge, Andrew ;
Bohman, Tom ;
Frieze, Alan ;
Pikhurko, Oleg .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) :3061-3071
[4]   Creating a giant component [J].
Bohmam, Tom ;
Kravitz, David .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (04) :489-511
[5]   A phase transition for avoiding a giant component [J].
Bohman, T ;
Kim, JH .
RANDOM STRUCTURES & ALGORITHMS, 2006, 28 (02) :195-214
[6]   Avoidance of a giant component in half the edge set of a random graph [J].
Bohman, T ;
Frieze, A ;
Wormald, NC .
RANDOM STRUCTURES & ALGORITHMS, 2004, 25 (04) :432-449
[7]   Avoiding a giant component [J].
Bohman, T ;
Frieze, A .
RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (01) :75-85
[8]   The phase transition in inhomogeneous random graphs [J].
Bollobas, Bela ;
Janson, Svante ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (01) :3-122
[9]  
Durrett R., 1996, PROBABILITY THEORY E
[10]   Embracing the giant component [J].
Flaxman, A ;
Gamarnik, D ;
Sorkin, GB .
LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 :69-79