On a relation between principal components and regression analysis

被引:9
作者
Jong, JC
Kotz, S
机构
[1] Univ Maryland, Dept Civil Engn, College Pk, MD 20742 USA
[2] George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA
关键词
coefficient of determination; eigenvalues; eigenvectors; extra sum of squares; principal components regression; residuals;
D O I
10.2307/2686055
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A regression approach to principal component analysis is presented in this note. We provide an alternative interpretation of principal components that illustrates the relation between the extra sum of squares in regression analysis and the eigenvalues associated with the principal components.
引用
收藏
页码:349 / 351
页数:3
相关论文
共 11 条
[1]  
COXE KL, 1986, ENCY STAT SCI, V7, P181
[2]  
Cramer H., 1945, MATH METHODS STAT
[3]   AN OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS [J].
DARROCH, JN .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (05) :1579-1582
[4]  
DAULTREY S, 1976, PRINCIPAL COMPONENTS
[5]  
Dunteman G. H., 1989, PRINCIPAL COMPONENTS
[6]  
Flury B., 1988, Common Principal Components and Related Multivariate Models
[7]  
Jobson J.D., 1992, APPL MULTIVARIATE DA, VII
[8]  
Johnson R A, 2007, Applied Multivariate Statistical Analysis: Pearson New International Edition
[9]  
Jolliffe I. T., 2002, Principal component analysis for special types of data, V2nd, DOI [10.1007/0-387-22440-8_13, DOI 10.1007/0-387-22440-8_13, DOI 10.1016/0169-7439(87)80084-9]
[10]   ON COMPONENT ANALYSES [J].
MEREDITH, W ;
MILLSAP, RE .
PSYCHOMETRIKA, 1985, 50 (04) :495-507