Identifiability of uncontrolled nonlinear rational systems

被引:50
作者
Evans, ND
Chapman, MJ
Chappell, MJ
Godfrey, KR [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[2] Coventry Univ, Sch MIS Math, Coventry CV1 5FB, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
nonlinear systems; structural identifiability; system identification; uncontrolled systems; autonomous systems;
D O I
10.1016/S0005-1098(02)00094-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper an approach for the identifiability analysis of uncontrolled rational systems is provided. The method is based on the use of a local smooth state space transformation. In particular it is shown that, provided the model satisfies an observability rank condition, the state trajectories of an uncontrolled system corresponding to parameter vectors with outputs that are identical locally in time, are connected via a smooth transformation. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:1799 / 1805
页数:7
相关论文
共 13 条
[1]  
[Anonymous], IDENTIFIABILITY PARA
[2]  
BELLMAN R, 1970, Mathematical Biosciences, V7, P329, DOI 10.1016/0025-5564(70)90132-X
[3]  
Chappell M. J., 1991, P 9 IFAC IFORS S ID, P492
[4]   GLOBAL IDENTIFIABILITY OF THE PARAMETERS OF NONLINEAR-SYSTEMS WITH SPECIFIED INPUTS - A COMPARISON OF METHODS [J].
CHAPPELL, MJ ;
GODFREY, KR ;
VAJDA, S .
MATHEMATICAL BIOSCIENCES, 1990, 102 (01) :41-73
[5]   NONLINEAR CONTROLLABILITY AND OBSERVABILITY [J].
HERMANN, R ;
KRENER, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) :728-740
[7]   Some remarks about an identifiability result of nonlinear systems [J].
Joly-Blanchard, G ;
Denis-Vidal, L .
AUTOMATICA, 1998, 34 (09) :1151-1152
[8]   Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences [J].
Margaria, G ;
Riccomagno, E ;
Chappell, MJ ;
Wynn, HP .
MATHEMATICAL BIOSCIENCES, 2001, 174 (01) :1-26
[9]   SYSTEM IDENTIFIABILITY BASED ON POWER-SERIES EXPANSION OF SOLUTION [J].
POHJANPALO, H .
MATHEMATICAL BIOSCIENCES, 1978, 41 (1-2) :21-33
[10]  
Sontag E. D., 1998, TEXTS APPL MATH, V6