Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners

被引:193
作者
Camargo, FD
Finegold, M
Goodell, MA
机构
[1] Baylor Coll Med, Ctr Cell & Gene Therapy, Houston, TX 77098 USA
[2] Baylor Coll Med, Dept Pathol, Houston, TX 77098 USA
[3] Baylor Coll Med, Dept Pediat, Houston, TX 77098 USA
[4] Baylor Coll Med, Cell & Mol Biol Program, Houston, TX 77098 USA
关键词
D O I
10.1172/JCI200421301
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Several recent reports have demonstrated that transplantation of bone marrow cells can result in the generation of functional hepatocytes. Cellular fusion between bone marrow-derived cells and host hepatocytes has been shown to be the mechanism of this phenomenon. However, the exact identity of the bone marrow cells that mediate cellular fusion has remained undetermined. Here we demonstrate that the hematopoietic progeny of a single hematopoietic stem cell (HSC) is sufficient to produce functional hepatic repopulation. Furthermore, transplantation of lymphocyte-deficient bone marrow cells and in vivo fate mapping of the myeloid lineage revealed that HSC-derived hepatocytes are primarily derived from mature myelomonocytic cells. In addition, using a Cre/lox-based strategy, we directly demonstrate that myeloid cells spontaneously fuse with host hepatocytes. Our findings raise the possibility that differentiated myeloid cells may be useful for future therapeutic applications of in vivo cellular fusion.
引用
收藏
页码:1266 / 1270
页数:5
相关论文
共 35 条
  • [1] Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes
    Alvarez-Dolado, M
    Pardal, R
    Garcia-Vardugo, JM
    Fike, JR
    Lee, HO
    Pfeffer, K
    Lois, C
    Morrison, SJ
    Alvarez-Buylla, A
    [J]. NATURE, 2003, 425 (6961) : 968 - 973
  • [2] Multinucleated giant cells
    Anderson, JM
    [J]. CURRENT OPINION IN HEMATOLOGY, 2000, 7 (01) : 40 - 47
  • [3] Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
    Asahara, T
    Masuda, H
    Takahashi, T
    Kalka, C
    Pastore, C
    Silver, M
    Kearne, M
    Magner, M
    Isner, JM
    [J]. CIRCULATION RESEARCH, 1999, 85 (03) : 221 - 228
  • [4] Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates
    Camargo, FD
    Green, R
    Capetenaki, Y
    Jackson, KA
    Goodell, MA
    [J]. NATURE MEDICINE, 2003, 9 (12) : 1520 - 1527
  • [5] Failure of bone marrow cells to transdifferentiate into neural cells in vivo
    Castro, RF
    Jackson, KA
    Goodell, MA
    Robertson, CS
    Liu, H
    Shine, HD
    [J]. SCIENCE, 2002, 297 (5585) : 1299 - 1299
  • [6] Conditional gene targeting in macrophages and granulocytes using LysMcre mice
    Clausen, BE
    Burkhardt, C
    Reith, W
    Renkawitz, R
    Förster, I
    [J]. TRANSGENIC RESEARCH, 1999, 8 (04) : 265 - 277
  • [7] Colucci F, 1999, J IMMUNOL, V162, P2761
  • [8] Muscle regeneration by bone marrow derived myogenic progenitors
    Ferrari, G
    Cusella-De Angelis, G
    Coletta, M
    Paolucci, E
    Stornaiuolo, A
    Cossu, G
    Mavilio, F
    [J]. SCIENCE, 1998, 279 (5356) : 1528 - 1530
  • [9] Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species
    Goodell, MA
    Rosenzweig, M
    Kim, H
    Marks, DF
    DeMaria, M
    Paradis, G
    Grupp, SA
    Sieff, CA
    Mulligan, RC
    Johnson, RP
    [J]. NATURE MEDICINE, 1997, 3 (12) : 1337 - 1345
  • [10] Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
    Goodell, MA
    Brose, K
    Paradis, G
    Conner, AS
    Mulligan, RC
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (04) : 1797 - 1806