Single amino acid substitutions in α-conotoxin PnIA shift selectivity for subtypes of the mammalian neuronal nicotinic acetylcholine receptor

被引:79
作者
Hogg, RC
Miranda, LP
Craik, DJ
Lewis, RJ
Alewood, PF
Adams, DJ [1 ]
机构
[1] Univ Queensland, Dept Physiol & Pharmacol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Drug Design & Dev, Brisbane, Qld 4072, Australia
关键词
D O I
10.1074/jbc.274.51.36559
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The alpha-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) antagonists, are emerging as important probes of the role played by different nAChR subtypes in cell function and communication, In this study, the native alpha-conotoxins PnIA and PnIB were found to cause concentration-dependent inhibition of the ACh-induced current in all rat parasympathetic neurons examined, with IC50 values of 14 and 33 nM, and a maximal reduction in current amplitude of 87% and 71%, respectively. The modified alpha-conotoxin [N11S]PnIA reduced the ACh-induced current with an IC50 value of 375 nM and a maximally effective concentration caused 91% block, [A10L]PnIA was the most potent inhibitor, reducing the ACh-induced current in similar to 80% of neurons, with an IC50 value of 1.4 nM and 46% maximal block of the total current, The residual current was not inhibited further by alpha-bungarotoxin, but was further reduced by the cu-conotoxins PnIA or PnIB, and by mecamylamine. H-1 NMR studies indicate that PnIA, PnIB, and the analogues, [A10L]PnIA and [N11S]PnIA, have identical backbone structures. We propose that positions 10 and II of PnIA and PnIB influence potency and determine selectivity among alpha 7 and other nAChR subtypes, including alpha 3 beta 2 and alpha 3 beta 4, Four distinct components of the nicotinic ACh-induced current in mammalian parasympathetic neurons have been dissected with these conopeptides.
引用
收藏
页码:36559 / 36564
页数:6
相关论文
共 37 条
[1]  
ALKONDON M, 1993, J PHARMACOL EXP THER, V265, P1455
[2]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[3]   COHERENCE TRANSFER BY ISOTROPIC MIXING - APPLICATION TO PROTON CORRELATION SPECTROSCOPY [J].
BRAUNSCHWEILER, L ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (03) :521-528
[4]  
Broxton N, 1998, P AUST NEUROSCI SOC, V9, P128
[5]   1-HYDROXY-7-AZABENZOTRIAZOLE - AN EFFICIENT PEPTIDE COUPLING ADDITIVE [J].
CARPINO, LA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (10) :4397-4398
[6]  
CARPINO LA, 1996, Patent No. 5580981
[7]   A new alpha-conotoxin which targets alpha 3 beta 2 nicotinic acetylcholine receptors [J].
Cartier, GE ;
Yoshikami, DJ ;
Gray, WR ;
Luo, SQ ;
Olivera, BM ;
McIntosh, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (13) :7522-7528
[8]  
Chang KT, 1999, J NEUROSCI, V19, P3701
[9]   TIME COURSE OF APPEARANCE OF ALPHA-BUNGAROTOXIN BINDING-SITES DURING DEVELOPMENT OF CHICK CILIARY GANGLION AND IRIS [J].
CHIAPPINELLI, VA ;
GIACOBINI, E .
NEUROCHEMICAL RESEARCH, 1978, 3 (04) :465-478
[10]   A NEURONAL NICOTINIC ACETYLCHOLINE-RECEPTOR SUBUNIT (ALPHA-7) IS DEVELOPMENTALLY REGULATED AND FORMS A HOMOOLIGOMERIC CHANNEL BLOCKED BY ALPHA-BTX [J].
COUTURIER, S ;
BERTRAND, D ;
MATTER, JM ;
HERNANDEZ, MC ;
BERTRAND, S ;
MILLAR, N ;
VALERA, S ;
BARKAS, T ;
BALLIVET, M .
NEURON, 1990, 5 (06) :847-856