Organic matter oxidation in deep-sea sediments: Distribution in the sediment column and implications for calcite dissolution

被引:29
作者
Martin, W. R. [1 ]
Sayles, F. L. [1 ]
机构
[1] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA
基金
美国国家科学基金会;
关键词
sediment organic matter oxidation; sedimentary calcite dissolution; early diagenesis;
D O I
10.1016/j.dsr2.2006.01.017
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
This study uses pore water profiles of NO3- and O-2 from 34 deep-sea study sites from five oceanic regions encompassing broad ranges of sediment composition and organic matter oxidation rate to analyze the depth distribution of organic matter oxidation within the sediment column. While the results are consistent with those of Hammond et al. (1996) and Hales (2003), the broader range of environmental variables considered in this study allows us to show that the depth of oxidation varies systematically with the integrated sedimentary organic matter oxidation rate. The scale length for oxidation varies from large values of about 4 cm when the organic matter oxidation rate is 5 mu mol/cm(2)/y to about 0.35 cm at oxidation rates above 20 mu mol/cm(2)/y. We have included this variability of organic matter oxidation depth in models of calcite dissolution. Our results show that variations in oxidation depth at a constant degree of supersaturation may result in changes in metabolic dissolution efficiency that are similar in magnitude to those resulting from basin-wide variations in the degree of supersaturation with respect to calcite. The model shows that, when the ratio of sedimentary organic matter oxidation rate to calcite rain rate is held fixed at 0.8 mol/mol, metabolic dissolution is likely to be significant at all bottom-water saturation levels and may result in dissolution of up to 50% of the calcite rain at the calcite saturation horizon. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:771 / 792
页数:22
相关论文
共 59 条
[1]  
Andersen Nils Moller, 1994, Invertebrate Taxonomy, V8, P1, DOI 10.1071/IT9940001
[2]   EFFECT OF DEEP-SEA SEDIMENTARY CALCITE PRESERVATION ON ATMOSPHERIC CO2 CONCENTRATION [J].
ARCHER, D ;
MAIERREIMER, E .
NATURE, 1994, 367 (6460) :260-263
[3]   A data-driven model of the global calcite lysocline [J].
Archer, D .
GLOBAL BIOGEOCHEMICAL CYCLES, 1996, 10 (03) :511-526
[4]   DISSOLUTION OF CALCITE IN DEEP-SEA SEDIMENTS - PH AND O-2 MICROELECTRODE RESULTS [J].
ARCHER, D ;
EMERSON, S ;
REIMERS, C .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (11) :2831-2845
[5]  
ARCHER D, 2002, GLOBAL BIOGEOCHEMICA, V16, DOI DOI 10.1029/2001GB001765
[6]   A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains [J].
Archer, DE ;
Morford, JL ;
Emerson, SR .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (01)
[7]   A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals [J].
Armstrong, RA ;
Lee, C ;
Hedges, JI ;
Honjo, S ;
Wakeham, SG .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 49 (1-3) :219-236
[8]   A WHOLE-CORE SQUEEZER FOR INTERFACIAL PORE-WATER SAMPLING [J].
BENDER, M ;
MARTIN, W ;
HESS, J ;
SAYLES, F ;
BALL, L ;
LAMBERT, C .
LIMNOLOGY AND OCEANOGRAPHY, 1987, 32 (06) :1214-1225
[9]   BENTHIC FLUXES AND PORE WATER STUDIES FROM SEDIMENTS OF THE CENTRAL EQUATORIAL NORTH PACIFIC - NUTRIENT DIAGENESIS [J].
BERELSON, WM ;
HAMMOND, DE ;
ONEILL, D ;
XU, XM ;
CHIN, C ;
ZUKIN, J .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1990, 54 (11) :3001-3012
[10]  
Berner RA., 1980, Early diagenesis: A theoretical approach