Surface diffusion of graphs:: Variational formulation, error analysis, and simulation

被引:37
作者
Bänsch, E
Morin, P
Nochetto, RH
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Free Univ Berlin, D-14195 Berlin, Germany
[3] Univ Nacl Litoral, IMAL, Dept Matemat, RA-3000 Santa Fe, Argentina
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
surface diffusion; fourth-order parabolic problem; finite elements; a priori error estimates; Schur complement; smoothing effect;
D O I
10.1137/S0036142902419272
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Surface diffusion is a (fourth-order highly nonlinear) geometric driven motion of a surface with normal velocity proportional to the surface Laplacian of mean curvature. We present a novel variational formulation for graphs and derive a priori error estimates for a time-continuous finite element discretization. We also introduce a semi-implicit time discretization and a Schur complement approach to solve the resulting fully discrete, linear systems. After computational veri. cation of the orders of convergence for polynomial degrees 1 and 2, we show several simulations in one dimension and two dimensions with and without forcing which explore the smoothing effect of surface diffusion, as well as the onset of singularities infinite time, such as infinite slopes and cracks.
引用
收藏
页码:773 / 799
页数:27
相关论文
共 20 条
[1]  
[Anonymous], 2001, HOKKAIDO MATH J
[2]   INTERFACE MORPHOLOGY DEVELOPMENT DURING STRESS-CORROSION CRACKING .1. VIA SURFACE DIFFUSION [J].
ASARO, RJ ;
TILLER, WA .
METALLURGICAL TRANSACTIONS, 1972, 3 (07) :1789-&
[3]  
Bänsch E, 2004, INT S NUM M, V147, P53
[4]  
BANSCH E, FINITE ELEMENT METHO
[5]  
Bonnetier E, 1999, RAIRO-MATH MODEL NUM, V33, P573
[6]  
Brenner S.C., 2002, MATH THEORY FINITE E
[7]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063
[8]   Space-time finite element methods for surface diffusion with applications to the theory of the stability of cylinders [J].
Coleman, BD ;
Falk, RS ;
Moakher, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (06) :1434-1448
[9]   Error analysis of a semidiscrete numerical scheme for diffusion in axially symmetric surfaces [J].
Deckelnick, K ;
Dziuk, G ;
Elliott, CM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2161-2179
[10]  
Deckelnick K., 2000, INTERFACES FREE BOUN, V2, P341