Interplay between chromatin modifying and remodeling complexes in transcriptional regulation

被引:22
作者
Belotserkovskaya, R [1 ]
Berger, SL [1 ]
机构
[1] Wistar Inst Anat & Biol, Mol Genet Program, Philadelphia, PA 19104 USA
来源
CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION | 1999年 / 9卷 / 3-4期
关键词
SWI/SNF; SAGA; chromatin remodeling; histone modification;
D O I
10.1615/CritRevEukarGeneExpr.v9.i3-4.70
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The question of a possible functional relationship between different chromatin-altering enzymatic activities is of gnat interest. Several remarkable parallels have been revealed regarding the action of the remodeling complex SWI/SNF and the histone acetylation complex SAGA during transcriptional activation in S. cerevisiae. Many promoters, but not all, that require one complex require the other as well. Mutations that disrupt both complexes cause much more severe phenotypes than single mutations. Both types of complexes are recruited to specific promoters by interaction with DNA-bound acidic activators, resulting in targeted acetylation and transcriptional activation. Taken together the data argue for independent mechanisms, but similar recruitment and functional interplay between these two types of chromatin-altering activities.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 73 条
[1]   NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J].
Allard, S ;
Utley, RT ;
Savard, J ;
Clarke, A ;
Grant, P ;
Brandl, CJ ;
Pillus, L ;
Workman, JL ;
Côté, J .
EMBO JOURNAL, 1999, 18 (18) :5108-5119
[2]   A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro [J].
Armstrong, JA ;
Bieker, JJ ;
Emerson, BM .
CELL, 1998, 95 (01) :93-104
[3]   CHARACTERIZATION OF PHYSICAL INTERACTIONS OF THE PUTATIVE TRANSCRIPTIONAL ADAPTER, ADA2, WITH ACIDIC ACTIVATION DOMAINS AND TATA-BINDING PROTEIN [J].
BARLEV, NA ;
CANDAU, R ;
WANG, LA ;
DARPINO, P ;
SILVERMAN, N ;
BERGER, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (33) :19337-19344
[4]   GENETIC ISOLATION OF ADA2 - A POTENTIAL TRANSCRIPTIONAL ADAPTER REQUIRED FOR FUNCTION OF CERTAIN ACIDIC ACTIVATION DOMAINS [J].
BERGER, SL ;
PINA, B ;
SILVERMAN, N ;
MARCUS, GA ;
AGAPITE, J ;
REGIER, JL ;
TRIEZENBERG, SJ ;
GUARENTE, L .
CELL, 1992, 70 (02) :251-265
[5]   Continuous and widespread roles for the Swi-Snf complex in transcription [J].
Biggar, SR ;
Crabtree, GR .
EMBO JOURNAL, 1999, 18 (08) :2254-2264
[6]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[7]   CELL-CYCLE CONTROL OF THE YEAST HO GENE - CIS-ACTING AND TRANS-ACTING REGULATORS [J].
BREEDEN, L ;
NASMYTH, K .
CELL, 1987, 48 (03) :389-397
[8]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[9]   Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation [J].
Brownell, JE ;
Allis, CD .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1996, 6 (02) :176-184
[10]  
Burns LG, 1997, BBA-GENE STRUCT EXPR, V1350, P159