Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: An additional transmembrane region at the N terminus

被引:221
作者
Wallner, M
Meera, P
Toro, L
机构
[1] Department of Anesthesiology, University of California Los Angeles, Los Angeles
关键词
transmembrane topology;
D O I
10.1073/pnas.93.25.14922
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The pore-forming alpha subunit of large conductance voltage- and Ca2+-sensitive K (MaxiK) channels is regulated by a beta subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming alpha subunit necessary for beta-subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to beta-subunit modulation, and analyzed the topology of the alpha subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel alpha subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1-S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate the S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers beta-subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function.
引用
收藏
页码:14922 / 14927
页数:6
相关论文
共 41 条
[1]   CALCIUM-ACTIVATED POTASSIUM CHANNELS EXPRESSED FROM CLONED COMPLEMENTARY DNAS [J].
ADELMAN, JP ;
SHEN, KZ ;
KAVANAUGH, MP ;
WARREN, RA ;
WU, YN ;
LAGRUTTA, A ;
BOND, CT ;
NORTH, RA .
NEURON, 1992, 9 (02) :209-216
[2]  
ANDREWS DW, 1992, J BIOL CHEM, V267, P7761
[3]   A COMPONENT OF CALCIUM-ACTIVATED POTASSIUM CHANNELS ENCODED BY THE DROSOPHILA-SLO LOCUS [J].
ATKINSON, NS ;
ROBERTSON, GA ;
GANETZKY, B .
SCIENCE, 1991, 253 (5019) :551-555
[4]   MSLO, A COMPLEX MOUSE GENE ENCODING MAXI CALCIUM-ACTIVATED POTASSIUM CHANNELS [J].
BUTLER, A ;
TSUNODA, S ;
MCCOBB, DP ;
WEI, A ;
SALKOFF, L .
SCIENCE, 1993, 261 (5118) :221-224
[5]   INITIATION OF PROTEIN-SYNTHESIS BY THE EUKARYOTIC TRANSLATIONAL APPARATUS ON CIRCULAR RNAS [J].
CHEN, CY ;
SARNOW, P .
SCIENCE, 1995, 268 (5209) :415-417
[6]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[7]   CLONING AND EXPRESSION OF A HUMAN LARGE-CONDUCTANCE CALCIUM-ACTIVATED POTASSIUM CHANNEL [J].
DWORETZKY, SI ;
TROJNACKI, JT ;
GRIBKOFF, VK .
MOLECULAR BRAIN RESEARCH, 1994, 27 (01) :189-193
[8]   ISOLATION OF INTRACELLULAR MEMBRANES BY MEANS OF SODIUM-CARBONATE TREATMENT - APPLICATION TO ENDOPLASMIC-RETICULUM [J].
FUJIKI, Y ;
HUBBARD, AL ;
FOWLER, S ;
LAZAROW, PB .
JOURNAL OF CELL BIOLOGY, 1982, 93 (01) :97-102
[9]  
GARCIACALVO M, 1994, J BIOL CHEM, V269, P676
[10]   COLOCALIZATION OF ACTIVE KCA CHANNELS AND CA2+ CHANNELS WITHIN CA2+ DOMAINS IN HELIX NEURONS [J].
GOLA, M ;
CREST, M .
NEURON, 1993, 10 (04) :689-699