Markov chain model for turbulent wind speed data

被引:91
作者
Kantz, H
Holstein, D
Ragwitz, M
Vitanov, NK
机构
[1] Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
[2] Fraunhofer Inst Syst & Innovat Res, D-76139 Karlsruhe, Germany
[3] Bulgarian Acad Sci, Inst Mech, BU-1113 Sofia, Bulgaria
关键词
time series analysis; Markov chains; turbulence;
D O I
10.1016/j.physa.2004.01.070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A continuous state Markov chain of suitable order is employed to approximate the dynamics of surface wind speeds recorded at a single site. Using past observations, the model yields probabilistic forecasts of the future. We employ it for the prediction of turbulent gusts. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 17 条
[1]  
ASSIREU AT, 2002, PHYSICA D, V397, P168
[2]  
Durbin PA., 2001, STAT THEORY MODELLIN
[3]   Statistical bivariate modelling of wind using first-order Markov chain and Weibull distribution [J].
Ettoumi, FY ;
Sauvageot, H ;
Adane, AEH .
RENEWABLE ENERGY, 2003, 28 (11) :1787-1802
[4]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[5]  
FETZIGER JH, 1997, COMPUTATIONAL METHOD
[6]   Coping with nonstationarity by overembedding [J].
Hegger, R ;
Kantz, H ;
Matassini, L ;
Schreiber, T .
PHYSICAL REVIEW LETTERS, 2000, 84 (18) :4092-4095
[7]  
KANTZ H, 2004, IN PRESS INT J BIFUR, V14
[8]  
KANTZ H, 1997, NONLINEAR TIME SERIE
[9]   Local random analogue prediction of nonlinear processes [J].
Paparella, F ;
Provenzale, A ;
Smith, LA ;
Taricco, C ;
Vio, R .
PHYSICS LETTERS A, 1997, 235 (03) :233-240
[10]  
Petersmann Ernst -Ulrich, 1998, JIEL, V1, P25