The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis

被引:137
作者
Christodoulides, Constantinos [1 ]
Laudes, Matthias [1 ]
Cawthorn, Will P. [1 ]
Schinner, Sven [1 ]
Soos, Maria [1 ]
O'Rahilly, Stephen [1 ]
Sethi, Jaswinder K. [1 ]
Vidal-Puig, Antonio [1 ]
机构
[1] Univ Cambridge, Addenbrookes Hosp, Dept Clin Biochem, Cambridge CB2 2QR, England
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
adipocyte; adipogenesis; Wnt; Dickkopf; 1; LRP5; human;
D O I
10.1242/jcs.02975
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Secretion of Wnts by adipose cells has an important role in the control of murine adipogenesis. We present the first evidence that a Wnt antagonist, Dickkopf 1 (Dkk1), is secreted by human preadipocytes and promotes adipogenesis. DKK1 mRNA increases six hours after onset of human adipogenesis and this is followed by an increase in Dkk1 protein. With further differentiation, the mRNA and protein levels progressively decline such that they are undetectable in mature adipocytes. The transient induction in DKK1 correlates with downregulation of cytoplasmic and nuclear beta-catenin levels, this being a surrogate marker of canonical Wnt signalling, and Wnt/beta-catenin transcriptional activity. In addition, constitutive expression of Dkk1 in 3T3-L1 preadipocytes promotes their differentiation, further supporting the functional significance of increased Dkk1 levels during human adipogenesis. Concomitant downregulation of the Dkk1 receptors LRP5 and LRP6 is likely to potentiate the ability of Dkk1 to inhibit Wnt signalling and promote differentiation. Notably, Dkk1 is not expressed in primary murine preadipocytes or cell lines. The involvement of Dkk1 in human but not murine adipogenesis indicates that inter-species differences exist in the molecular control of this process. Given the public health importance of disorders of adipose mass, further knowledge of the pathways involved specifically in human adipocyte differentiation might ultimately be of clinical relevance.
引用
收藏
页码:2613 / 2620
页数:8
相关论文
共 37 条
[1]   Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling [J].
Ai, M ;
Holmen, SL ;
Van Hul, W ;
Williams, BO ;
Warman, ML .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (12) :4946-4955
[2]   Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow [J].
Bafico, A ;
Liu, GZ ;
Yaniv, A ;
Gazit, A ;
Aaronson, SA .
NATURE CELL BIOLOGY, 2001, 3 (07) :683-686
[3]   Regulation of Wnt signaling during adipogenesis [J].
Bennett, CN ;
Ross, SE ;
Longo, KA ;
Bajnok, L ;
Hemati, N ;
Johnson, KW ;
Harrison, SD ;
MacDougald, OA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (34) :30998-31004
[4]   High bone density due to a mutation in LDL-receptor-related protein 5 [J].
Boyden, LM ;
Mao, JH ;
Belsky, J ;
Mitzner, L ;
Farhi, A ;
Mitnick, MA ;
Wu, DQ ;
Insogna, K ;
Lifton, RP .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (20) :1513-1521
[5]   GSK-3 inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau dephosphorylation and β-catenin stabilisation without elevation of glycogen synthase activity [J].
Culbert, AA ;
Brown, MJ ;
Frame, S ;
Hagen, T ;
Cross, DAE ;
Bax, B ;
Reith, AD .
FEBS LETTERS, 2001, 507 (03) :288-294
[6]   Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning [J].
Davidson, G ;
Mao, BY ;
Barrantes, ID ;
Niehrs, C .
DEVELOPMENT, 2002, 129 (24) :5587-5596
[7]   LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development [J].
Gong, YQ ;
Slee, RB ;
Fukai, N ;
Rawadi, G ;
Roman-Roman, S ;
Reginato, AM ;
Wang, HW ;
Cundy, T ;
Glorieux, FH ;
Lev, D ;
Zacharin, M ;
Oexle, K ;
Marcelino, J ;
Suwairi, W ;
Heeger, S ;
Sabatakos, G ;
Apte, S ;
Adkins, WN ;
Allgrove, J ;
Arslan-Kirchner, M ;
Batch, JA ;
Beighton, P ;
Black, GCM ;
Boles, RG ;
Boon, LM ;
Borrone, C ;
Brunner, HG ;
Carle, GF ;
Dallapiccola, B ;
De Paepe, A ;
Floege, B ;
Halfhide, ML ;
Hall, B ;
Hennekam, RC ;
Hirose, T ;
Jans, A ;
Jüppner, H ;
Kim, CA ;
Keppler-Noreuil, K ;
Kohlschuetter, A ;
LaCombe, D ;
Lambert, M ;
Lemyre, E ;
Letteboer, T ;
Peltonen, L ;
Ramesar, RS ;
Romanengo, M ;
Somer, H ;
Steichen-Gersdorf, E ;
Steinmann, B .
CELL, 2001, 107 (04) :513-523
[8]   The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow [J].
Gregory, CA ;
Singh, H ;
Perry, AS ;
Prockop, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (30) :28067-28078
[9]   Signalling activity of β-catenin targeted to different subcellular compartments [J].
Hagen, T ;
Sethi, JK ;
Foxwell, N ;
Vidal-Puig, A .
BIOCHEMICAL JOURNAL, 2004, 379 :471-477
[10]   Characterisation of the phosphorylation of β-catenin at the GSK-3 priming site Ser45 [J].
Hagen, T ;
Vidal-Puig, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 294 (02) :324-328