Identification of a substrate recognition site on Ubc9

被引:105
作者
Lin, DH
Tatham, MH
Yu, B
Kim, S
Hay, RT
Chen, Y
机构
[1] City Hope Natl Med Ctr, Beckman Res Inst, Div Immunol, Duarte, CA 91010 USA
[2] Univ St Andrews, Inst Biomol Sci, St Andrews KY16 5ST, Fife, Scotland
关键词
D O I
10.1074/jbc.M108418200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human Ubc9 is homologous to ubiquitin-conjugating enzymes. However, instead of conjugating ubiquitin, it conjugates a ubiquitin homologue, small ubiquitin-like modifier 1 (SUMO-1), also known as UBL1, GMP1, SMTP3, PIC1, and sentrin. The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin-activating enzymes (El), the three-dimensional structures of the ubiquitin-conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of substrates with Ubc9 has been studied using NMR spectroscopy. Peptides with sequences that correspond to those of the SUMO-1 conjugation sites from p53 and c-Jun both bind to a surface adjacent to the active site Cys(93) of human Ubc9, which has been previously shown to include residues that demonstrate the most significant dynamics on the microsecond to millisecond time scale. Mutations in this region, Q126A, Q130A, A131D, E132A, Y134A, and T135A, were constructed to evaluate the role of these residues in SUMO-1 conjugation. These alterations have significant effects on the conjugation of SUMO-1 with the target proteins p53, E1B, and promyelocytic leukemia protein and define a substrate binding site on Ubc9. Furthermore, the SUMO-1 conjugation site of p53 does not form any defined secondary structure when either free or bound to Ubc9. This suggests that a defined secondary structure at SUMO-1 conjugation sites in target proteins is not necessary for recognition and conjugation by the SUMO-1 pathway.
引用
收藏
页码:21740 / 21748
页数:9
相关论文
共 55 条
[1]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[2]   RETRACTED: SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53 (Retracted Article) [J].
Buschmann, T ;
Fuchs, SY ;
Lee, CG ;
Pan, ZQ ;
Ronai, Z .
CELL, 2000, 101 (07) :753-762
[3]   MAPPING OF THE BINDING INTERFACES OF THE PROTEINS OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM, HPR AND IIA(GLC) [J].
CHEN, Y ;
REIZER, J ;
SAIER, MH ;
FAIRBROTHER, WJ ;
WRIGHT, PE .
BIOCHEMISTRY, 1993, 32 (01) :32-37
[4]   THEORY AND APPLICATIONS OF THE TRANSFERRED NUCLEAR OVERHAUSER EFFECT TO THE STUDY OF THE CONFORMATIONS OF SMALL LIGANDS BOUND TO PROTEINS [J].
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1982, 48 (03) :402-417
[5]  
COOK WJ, 1992, J BIOL CHEM, V267, P15116
[6]   TERTIARY STRUCTURES OF CLASS-I UBIQUITIN-CONJUGATING ENZYMES ARE HIGHLY CONSERVED - CRYSTAL-STRUCTURE OF YEAST UBC4 [J].
COOK, WJ ;
JEFFREY, LC ;
XU, YP ;
CHAU, V .
BIOCHEMISTRY, 1993, 32 (50) :13809-13817
[7]   Crystal structure of a class I ubiquitin conjugating enzyme (Ubc7) from Saccharomyces cerevisiae at 2.9 angstrom resolution [J].
Cook, WJ ;
Martin, PD ;
Edwards, BFP ;
Yamazaki, RK ;
Chau, V .
BIOCHEMISTRY, 1997, 36 (07) :1621-1627
[8]   INITIAL STEADY STATE VELOCITIES IN THE EVALUATION OF ENZYME-COENZYME-SUBSTRATE REACTION MECHANISMS [J].
DALZIEL, K .
ACTA CHEMICA SCANDINAVICA, 1957, 11 (10) :1706-1723
[9]   SUMO-1 modification of IκBα inhibits NF-κB activation [J].
Desterro, JMP ;
Rodriguez, MS ;
Hay, RT .
MOLECULAR CELL, 1998, 2 (02) :233-239
[10]   Ubch9 conjugates SUMO but not ubiquitin [J].
Desterro, JMP ;
Thomson, J ;
Hay, RT .
FEBS LETTERS, 1997, 417 (03) :297-300