Akt2 regulates cardiac metabolism and cardiomyocyte survival

被引:138
作者
DeBosch, Brian
Sambandam, Nandakumar
Weinheimer, Carla
Courtois, Michael
Muslin, Anthony J.
机构
[1] Washington Univ, Sch Med, Dept Med, Cardiovasc Res Ctr, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M513087200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Akt family of serine-threonine kinases participates in diverse cellular processes, including the promotion of cell survival, glucose metabolism, and cellular protein synthesis. All three known Akt family members, Akt1, Akt2 and Akt3, are expressed in the myocardium, although Akt1 and Akt2 are most abundant. Previous studies demonstrated that Akt1 and Akt3 overexpression results in enhanced myocardial size and function. Yet, little is known about the role of Akt2 in modulating cardiac metabolism, survival, and growth. Here, we utilize murine models with targeted disruption of the akt2 or the akt1 genes to demonstrate that Akt2, but not Akt1, is required for insulin-stimulated 2-[H-3] deoxyglucose uptake and metabolism. In contrast, akt2 (-/-) mice displayed normal cardiac growth responses to provocative stimulation, including ligand stimulation of cultured cardiomyocytes, pressure overload by transverse aortic constriction, and myocardial infarction. However, akt2 (-/-) mice were found to be sensitized to cardiomyocyte apoptosis in response to ischemic injury, and apoptosis was significantly increased in the peri-infarct zone of akt2 (-/-) hearts 7 days after occlusion of the left coronary artery. These results implicate Akt2 in the regulation of cardiomyocyte metabolism and survival.
引用
收藏
页码:32841 / 32851
页数:11
相关论文
共 29 条
[1]   Insulin signaling in heart muscle: Lessons from genetically engineered mouse models [J].
Abel, ED .
CURRENT HYPERTENSION REPORTS, 2004, 6 (06) :416-423
[2]   Glucose and fatty acid metabolism in the isolated working mouse heart [J].
Belke, DD ;
Larsen, TS ;
Lopaschuk, GD ;
Severson, DL .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1999, 277 (04) :R1210-R1217
[3]   GLUT4 and company: SNAREing roles in insulin-regulated glucose uptake [J].
Cheatham, B .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2000, 11 (09) :356-361
[4]   Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J].
Cho, H ;
Thorvaldsen, JL ;
Chu, QW ;
Feng, F ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38349-38352
[5]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[6]   The heart: an end-organ of GH action [J].
Colao, A ;
Vitale, G ;
Pivonello, R ;
Ciccarelli, A ;
Di Somma, C ;
Lombardi, G .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2004, 151 :S93-S101
[7]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789
[8]   Akt1 is required for physiological cardiac growth [J].
DeBosch, B ;
Treskov, I ;
Lupu, TS ;
Weinheimer, C ;
Kovacs, A ;
Courtois, M ;
Muslin, AJ .
CIRCULATION, 2006, 113 (17) :2097-2104
[9]   Protein kinase cascades in the regulation of cardiac hypertrophy [J].
Dorn, GW ;
Force, T .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (03) :527-537
[10]   Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart [J].
Fujio, Y ;
Nguyen, T ;
Wencker, D ;
Kitsis, RN ;
Walsh, K .
CIRCULATION, 2000, 101 (06) :660-667