Striping of nematic elastomers

被引:14
作者
Fried, E [1 ]
Korchagin, V [1 ]
机构
[1] Univ Illinois, Dept Theoret & Appl Mech, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
nematic elastomers; stripe formation; bifurcation; stability;
D O I
10.1016/S0020-7683(02)00169-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider a recent experiment of Kundler and Finkelmann (Macromol. Rapid Commun. 16 (1995) 679), who subjected an aligned specimen of nematic elastomer to uniaxial extension and observed the formation of striped domains. In so doing, we apply the general theory for nematic elastomers developed by Anderson et al. (J. Elast. 56 (1999) 33) and work with an energy density that combines the effects included in the molecular-statistical theory of nematic rubber elasticity with the Oseen-Zocher-Frank theory of nematic curvature elasticity. Assuming that the deformation and orientation fields remain in-plane, we arrive at a boundary-value problem which admits solutions corresponding to striped states. We use elementary aspects of bifurcation theory to explore the local stability of these solutions. We also obtain analytical estimates for the energy and thickness of interstripe domain walls as functions of imposed extension and compare these with numerical predictions. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:3451 / 3467
页数:17
相关论文
共 14 条
[1]   A continuum-mechanical theory for nematic elastomers [J].
Anderson, DR ;
Carlson, DE ;
Fried, E .
JOURNAL OF ELASTICITY, 1999, 56 (01) :33-58
[2]   Polydomain-monodomain transition in nematic elastomers [J].
Fridrikh, SV ;
Terentjev, EM .
PHYSICAL REVIEW E, 1999, 60 (02) :1847-1857
[3]   An order-parameter-based theory as a regularization of a sharp-interface theory for solid-solid phase transitions [J].
Fried E. ;
Grach G. .
Archive for Rational Mechanics and Analysis, 1997, 138 (4) :355-404
[4]  
Golubitsky M., 1985, SINGULARITIES GROUPS
[5]  
Knupp P.M., 1993, FUNDAMENTALS GRID GE
[6]   STRAIN-INDUCED DIRECTOR REORIENTATION IN NEMATIC LIQUID SINGLE-CRYSTAL ELASTOMERS [J].
KUNDLER, I ;
FINKELMANN, H .
MACROMOLECULAR RAPID COMMUNICATIONS, 1995, 16 (09) :679-686
[7]  
Roberts PMS, 1997, J PHYS II, V7, P1337, DOI 10.1051/jp2:1997190
[8]   Spatially periodic solutions in a 1D model of phase transitions with order parameter [J].
Sikora, J ;
Cusumano, JP ;
Jester, WA .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 121 (3-4) :275-294
[9]   PHYSICS OF LIQUID-CRYSTALS [J].
STEPHEN, MJ ;
STRALEY, JP .
REVIEWS OF MODERN PHYSICS, 1974, 46 (04) :617-704
[10]   Liquid crystal acrylate-based networks: polymer backbone-LC order interaction [J].
Talroze, RV ;
Zubarev, ER ;
Kuptsov, SA ;
Merekalov, AS ;
Yuranova, TI ;
Plate, NA ;
Finkelmann, H .
REACTIVE & FUNCTIONAL POLYMERS, 1999, 41 (1-3) :1-11