Simplified amino acid alphabets for protein fold recognition and implications for folding

被引:194
作者
Murphy, LR [1 ]
Wallqvist, A [1 ]
Levy, RM [1 ]
机构
[1] Rutgers State Univ, Dept Chem, Wright Rieman Labs, Piscataway, NJ 08854 USA
来源
PROTEIN ENGINEERING | 2000年 / 13卷 / 03期
关键词
minimal alphabet; protein fold recognition; sequence alignment;
D O I
10.1093/protein/13.3.149
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein design experiments have shown that the use of specific subsets of amino acids can produce foldable proteins. This prompts the question of whether there is a minimal amino acid alphabet which could be used to fold all proteins. In this work we make an analogy between sequence patterns which produce foldable sequences and those which make it possible to detect structural homologs by aligning sequences, and use it to suggest the possible size of such a reduced alphabet. We estimate that reduced alphabets containing 10-12 letters can be used to design foldable sequences for a large number of protein families. This estimate is based on the observation that there is little loss of the information necessary to pick out structural homologs in a clustered protein sequence database when a suitable reduction of the amino acid alphabet from 20 to 10 letters is made, but that this information is rapidly degraded when further reductions in the alphabet are made.
引用
收藏
页码:149 / 152
页数:4
相关论文
共 29 条
[1]   DE-NOVO PROTEIN DESIGN - FROM MOLTEN GLOBULES TO NATIVE-LIKE STATES [J].
BETZ, SF ;
RALEIGH, DP ;
DEGRADO, WF .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (04) :601-610
[2]   Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships [J].
Brenner, SE ;
Chothia, C ;
Hubbard, TJP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6073-6078
[3]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[4]  
COLLINS JF, 1987, NUCL ACID PROTEIN SE, V3, P323
[5]   COOPERATIVELY FOLDED PROTEINS IN RANDOM SEQUENCE LIBRARIES [J].
DAVIDSON, AR ;
LUMB, KJ ;
SAUER, RT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (10) :856-864
[6]   From Levinthal to pathways to funnels [J].
Dill, KA ;
Chan, HS .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (01) :10-19
[7]   2 BINDING ORIENTATIONS FOR PEPTIDES TO THE SRC SH3 DOMAIN - DEVELOPMENT OF A GENERAL-MODEL FOR SH3-LIGAND INTERACTIONS [J].
FENG, SB ;
CHEN, JK ;
YU, HT ;
SIMON, JA ;
SCHREIBER, SL .
SCIENCE, 1994, 266 (5188) :1241-1247
[8]   FOLDING AND FUNCTION OF A T4 LYSOZYME CONTAINING 10 CONSECUTIVE ALANINES ILLUSTRATE THE REDUNDANCY OF INFORMATION IN AN AMINO-ACID-SEQUENCE [J].
HEINZ, DW ;
BAASE, WA ;
MATTHEWS, BW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3751-3755
[9]   AMINO-ACID SUBSTITUTION MATRICES FROM PROTEIN BLOCKS [J].
HENIKOFF, S ;
HENIKOFF, JG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (22) :10915-10919
[10]   From structure to sequence and back again [J].
Hinds, DA ;
Levitt, M .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 258 (01) :201-209