Renormalization of self-consistent approximation schemes at finite temperature. II. Applications to the sunset diagram

被引:123
作者
van Hees, H [1 ]
Knoll, J [1 ]
机构
[1] GSI Darmstadt, D-64291 Darmstadt, Germany
关键词
D O I
10.1103/PhysRevD.65.105005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first paper of this series, are applied to first example cases of phi(4) theory. In addition to the tadpole (Hartree) approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy diagram into the self-consistent scheme based on the Phi-derivable approximation or the two-particle irreducible effective action concept.
引用
收藏
页数:14
相关论文
共 21 条
[1]  
Aarts G, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.105010
[2]   DEEP-INELASTIC SCATTERING BEYOND THE LEADING ORDER IN ASYMPTOTICALLY FREE GAUGE THEORIES [J].
BARDEEN, WA ;
BURAS, AJ ;
DUKE, DW ;
MUTA, T .
PHYSICAL REVIEW D, 1978, 18 (11) :3998-4017
[3]   PHASE-TRANSITION IN SIGMA-MODEL AT FINITE TEMPERATURE [J].
BAYM, G ;
GRINSTEIN, G .
PHYSICAL REVIEW D, 1977, 15 (10) :2897-2912
[4]   SELF-CONSISTENT APPROXIMATIONS IN MANY-BODY SYSTEMS [J].
BAYM, G .
PHYSICAL REVIEW, 1962, 127 (04) :1391-&
[5]   Controlled nonperturbative dynamics of quantum fields out of equilibrium [J].
Berges, J .
NUCLEAR PHYSICS A, 2002, 699 (3-4) :847-886
[6]   Thermalization of quantum fields from time-reversal invariant evolution equations [J].
Berges, J ;
Cox, J .
PHYSICS LETTERS B, 2001, 517 (3-4) :369-374
[7]   UBER DIE MULTIPLIKATION DER KAUSALFUNKTIONEN IN DER QUANTENTHEORIE DER FELDER [J].
BOGOLIUBOW, NN ;
PARASIUK, OS .
ACTA MATHEMATICA, 1957, 97 (3-4) :227-266
[8]  
BRAATEN E, IN PRESS PHYS REV D
[9]   EFFECTIVE ACTION FOR COMPOSITE OPERATORS [J].
CORNWALL, JM ;
JACKIW, R ;
TOMBOULIS, E .
PHYSICAL REVIEW D, 1974, 10 (08) :2428-2445
[10]   Self-consistent approximations to non-equilibrium many-body theory [J].
Ivanov, YB ;
Knoll, J ;
Voskresensky, DN .
NUCLEAR PHYSICS A, 1999, 657 (04) :413-445