A hierarchical Bayesian model to predict the duration of immunity to Haemophilus influenzae type b

被引:15
作者
Auranen, K
Eichner, M
Käyhty, H
Takala, AK
Arjas, E
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
[2] Univ Tubingen, Inst Med Biometrie, D-72070 Tubingen, Germany
[3] Natl Publ Hlth Inst, FIN-00300 Helsinki, Finland
关键词
Bayesian estimation; hierarchical growth curve models; latent data; Markov chain Monte Carlo simulation; subclinical infection with Haemophilus influenzae type b;
D O I
10.1111/j.0006-341X.1999.01306.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A hierarchical Bayesian regression model is fitted to longitudinal data on Haemophilus influenzae type b (Hib) serum antibodies. To estimate the decline rate of the antibody concentration, the model accommodates the possibility of unobserved subclinical infections with Hib bacteria, that cause increasing concentrations during the study period. The computations rely on Markov chain Monte Carlo simulation of the joint posterior distribution of the model parameters. The model is used to predict the duration of immunity to subclinical Hib infection and to a serious invasive Hib disease.
引用
收藏
页码:1306 / 1313
页数:8
相关论文
共 18 条
[1]  
ARJAS E, 1989, SCAND J STAT, V16, P177
[2]  
Auranen K, 1996, STAT MED, V15, P2235, DOI 10.1002/(SICI)1097-0258(19961030)15:20<2235::AID-SIM354>3.0.CO
[3]  
2-G
[4]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[5]   SCHEDULING OF REVACCINATION AGAINST HEPATITIS-B VIRUS [J].
COURSAGET, P ;
YVONNET, B ;
GILKS, WR ;
WANG, CC ;
DAY, NE ;
CHIRON, JP ;
DIOPMAR, I .
LANCET, 1991, 337 (8751) :1180-1183
[6]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[7]  
Gelman A., 1992, STAT SCI, V7, P457, DOI [10.1214/ss/1177011136, DOI 10.1214/SS/1177011136]
[8]  
Geyer CJ, 1992, STAT SCI, V7, P473, DOI [10.1214/ss/1177011137, DOI 10.1214/SS/1177011137]
[9]   Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J].
Green, PJ .
BIOMETRIKA, 1995, 82 (04) :711-732
[10]  
Kalbfleisch JD., 2011, The statistical analysis of failure time data