Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3 Transcription Factor

被引:1871
作者
Miyara, Makoto [1 ]
Yoshioka, Yumiko [1 ]
Kitoh, Akihiko [1 ]
Shima, Tomoko [1 ]
Wing, Kajsa [1 ]
Niwa, Akira [2 ]
Parizot, Christophe [3 ]
Taflin, Cecile [3 ]
Heike, Toshio [2 ]
Valeyre, Dominique [4 ]
Mathian, Alexis [3 ]
Nakahata, Tatsutoshi [2 ]
Yamaguchi, Tomoyuki [1 ]
Nomura, Takashi [1 ]
Ono, Masahiro [1 ]
Amoura, Zahir [5 ,6 ]
Gorochov, Guy [3 ,6 ]
Sakaguchi, Shimon [1 ,7 ,8 ]
机构
[1] Kyoto Univ, Inst Frontier Med Sci, Dept Expt Pathol, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Med, Dept Pediat, Kyoto 6068507, Japan
[3] Hop La Pitie Salpetriere, Lab AP HP Immunol Cellulaire & Tissulaire, INSERM, UMR S 945, F-75013 Paris, France
[4] Hop Avicenne, AP HP, Dept Pneumol, F-93000 Bobigny, France
[5] Hop La Pitie Salpetriere, AP HP, Dept Internal Med, F-75013 Paris, France
[6] Univ Paris 06, F-75005 Paris, France
[7] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[8] Osaka Univ, WPI Immunol Frontier Res Ctr, Suita, Osaka 5650871, Japan
基金
日本学术振兴会;
关键词
ARYL-HYDROCARBON RECEPTOR; PERIPHERAL-BLOOD; REGULATORY CELLS; IN-VITRO; HELPER-CELLS; NAIVE; POPULATION; IDENTIFICATION; PROLIFERATION; SUBPOPULATION;
D O I
10.1016/j.immuni.2009.03.019
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
FoxP3 is a key transcription factor for the development and function of natural CD4(+) regulatory T cells (Treg cells). Here we show that human FoxP3(+)CD4(+) T cells were composed of three phenotypically and functionally distinct subpopulations: CD45RA(+)FoxP3(lo) resting Treg cells (rTreg cells) and CD45RA(-)FoxP3(hi) activated Treg cells (aTreg cells), both of which were suppressive in vitro, and cytokine-secreting CD45RA(-)FoxP3(lo) nonsuppressive T cells. The proportion of the three subpopulations differed between cord blood, aged individuals, and patients with immunological diseases. Terminally differentiated aTreg cells rapidly died whereas rTreg cells proliferated and converted into aTreg cells in vitro and in vivo. This was shown by the transfer of rTreg cells into NOD-scid-common gamma-chain-deficient mice and by TCR sequence-based T cell clonotype tracing in peripheral blood in a normal individual. Taken together, the dissection of FoxP3(+) cells into subsets enables one to analyze Treg cell differentiation dynamics and interactions in normal and disease states, and to control immune responses through manipulating particular FoxP3(+) subpopulations.
引用
收藏
页码:899 / 911
页数:13
相关论文
共 50 条
  • [1] Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production
    Allan, Sarah E.
    Crome, Sarah Q.
    Crellin, Natasha K.
    Passerini, Laura
    Steiner, Theodore S.
    Bacchetta, Rosa
    Roncarolo, Maria G.
    Levings, Megan K.
    [J]. INTERNATIONAL IMMUNOLOGY, 2007, 19 (04) : 345 - 354
  • [2] CD4+CD25high regulatory cells in human peripheral blood
    Baecher-Allan, C
    Brown, JA
    Freeman, GJ
    Hafler, DA
    [J]. JOURNAL OF IMMUNOLOGY, 2001, 167 (03) : 1245 - 1253
  • [3] MHC class II expression identifies functionally distinct human regulatory T cells
    Baecher-Allan, Clare
    Wolf, Elizabeth
    Haller, David A.
    [J]. JOURNAL OF IMMUNOLOGY, 2006, 176 (08) : 4622 - 4631
  • [4] DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells
    Baron, Udo
    Floess, Stefan
    Wieczorek, Georg
    Baumann, Katrin
    Gruetzkau, Andreas
    Dong, Jun
    Thiel, Andreas
    Boeld, Tina J.
    Hoffmann, Petra
    Edinger, Matthias
    Tuerbachova, Ivana
    Hamann, Alf
    Olek, Sven
    Huehn, Jochen
    [J]. EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (09) : 2378 - 2389
  • [5] Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival
    Curiel, TJ
    Coukos, G
    Zou, LH
    Alvarez, X
    Cheng, P
    Mottram, P
    Evdemon-Hogan, M
    Conejo-Garcia, JR
    Zhang, L
    Burow, M
    Zhu, Y
    Wei, S
    Kryczek, I
    Daniel, B
    Gordon, A
    Myers, L
    Lackner, A
    Disis, ML
    Knutson, KL
    Chen, LP
    Zou, WP
    [J]. NATURE MEDICINE, 2004, 10 (09) : 942 - 949
  • [6] Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood
    Dieckmann, D
    Plottner, H
    Berchtold, S
    Berger, T
    Schuler, G
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 193 (11) : 1303 - 1310
  • [7] Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy
    Ehrenstein, MR
    Evans, JG
    Singh, A
    Moore, S
    Warnes, G
    Isenberg, DA
    Mauri, C
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 200 (03) : 277 - 285
  • [8] Epigenetic control of the foxp3 locus in regulatory T cells
    Floess, Stefan
    Freyer, Jennifer
    Siewert, Christiane
    Baron, Udo
    Olek, Sven
    Polansky, Julia
    Schlawe, Kerstin
    Chang, Hyun-Dong
    Bopp, Tobias
    Schmitt, Edgar
    Klein-Hessling, Stefan
    Serfling, Edgar
    Hamann, Alf
    Huehn, Jochen
    [J]. PLOS BIOLOGY, 2007, 5 (02) : 169 - 178
  • [9] Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells (Reprinted from vol 4, pg 330-336, 2003)
    Fontenot, Jason D.
    Gavin, Marc A.
    Rudensky, Alexander Y.
    [J]. JOURNAL OF IMMUNOLOGY, 2017, 198 (03) : 986 - 992
  • [10] Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death
    Fritzsching, Benedikt
    Oberle, Nina
    Pauly, Eva
    Geffers, Robert
    Buer, Jan
    Poschl, Johannes
    Krammer, Peter
    Linderkamp, Otwin
    Suri-Payer, Elisabeth
    [J]. BLOOD, 2006, 108 (10) : 3371 - 3378