Non-side-population hematopoietic stem cells in mouse bone marrow

被引:57
作者
Morita, Yohei
Ema, Hideo
Yamazaki, Satoshi
Nakauchi, Hiromitsu
机构
[1] Univ Tokyo, Inst Med Sci, Ctr Med Expt, Lab Stem Cell Therapy,Minato Ku, Tokyo 1088639, Japan
[2] ReproCell, Tokyo, Japan
关键词
D O I
10.1182/blood-2006-03-010207
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Most hematopoietic stem cells (HSCs) are assumed to reside in the so-called side population (SP) in adult mouse bone marrow (BM). We report the coexistence of non-SP HSCs that do not significantly differ from SP HSCs in numbers, capacities, and cell-cycle states. When stained with Hoechst 33342 dye, the CD34(-/low) c-Kit(+)Sca(-1+) lineage marker(-) (CD34(-)KSL) cell population, highly enriched in mouse HSCs, was almost equally divided into the SP and the main population (MP) that represents non-SP cells. Competitive repopulation assays with single or 30 SP-or MP-CD34(-)KSL cells found similar degrees of repopulating activity and frequencies of repopulating cells for these populations. Secondary transplantation detected self-renewal capacity in both populations. SP analysis of BM cells from primary recipient mice suggested that the SP and MP phenotypes are interconvertible. Cell-cycle analyses revealed that CD34(-)KSL cells were in a quiescent state and showed uniform cell-cycle kinetics, regardless of whether they were in the SP or MP Bcrp-1 expression was similarly detected in SP- and MP-CD34(-)KSL cells, suggesting that the SP phenotype is regulated not only by Bcrp-1, but also by other factors. The SP phenotype does not specify all HSCs; its identity with stem cell function thus is unlikely.
引用
收藏
页码:2850 / 2856
页数:7
相关论文
共 40 条
[1]   Upregulation of flt3 expression within the bone marrow Lin-Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity [J].
Adolfsson, J ;
Borge, OJ ;
Bryder, D ;
Theilgaard-Mönch, K ;
Åstrand-Grundström, I ;
Sitnicka, E ;
Sasaki, Y ;
Jacobsen, SEW .
IMMUNITY, 2001, 15 (04) :659-669
[2]   Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche [J].
Arai, F ;
Hirao, A ;
Ohmura, M ;
Sato, H ;
Matsuoka, S ;
Takubo, K ;
Ito, K ;
Koh, GY ;
Suda, T .
CELL, 2004, 118 (02) :149-161
[3]   Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation [J].
Asakura, A ;
Rudnicki, MA .
EXPERIMENTAL HEMATOLOGY, 2002, 30 (11) :1339-1345
[4]  
BAINES P, 1983, EXP HEMATOL, V11, P701
[5]   Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow [J].
Balazs, AB ;
Fabian, AJ ;
Esmon, CT ;
Mulligan, RC .
BLOOD, 2006, 107 (06) :2317-2321
[6]   Evidence for a resident subset of cells with SP phenotype in the C2C12 myogenic line:: a tool to explore muscle stem cell biology [J].
Benchaouir, R ;
Rameau, P ;
Decraene, C ;
Dreyfus, P ;
Israeli, D ;
Piétu, G ;
Danos, O ;
Garcia, L .
EXPERIMENTAL CELL RESEARCH, 2004, 294 (01) :254-268
[7]  
Bradford GB, 1997, EXP HEMATOL, V25, P445
[8]   Hematopoietic stem cells do not engraft with absolute efficiencies [J].
Camargo, FD ;
Chambers, SM ;
Drew, E ;
McNagny, KM ;
Goodell, MA .
BLOOD, 2006, 107 (02) :501-507
[9]   The Endoglinpositive Sca-1Positive Rhodaminelow phenotype defines a near-homogeneous population of long-term repopulating hematopoietic stem cells [J].
Chen, CZ ;
Li, L ;
Li, M ;
Lodish, HF .
IMMUNITY, 2003, 19 (04) :525-533
[10]   Flow cytometry in analysis of cell cycle and apoptosis [J].
Darzynkiewicz, Z ;
Bedner, E ;
Smolewski, P .
SEMINARS IN HEMATOLOGY, 2001, 38 (02) :179-193