Regulation of ryanodine receptor opening by lumenal Ca2+ underlies quantal Ca2+ release in PC12 cells

被引:52
作者
Koizumi, S
Lipp, P
Berridge, MJ
Bootman, MD
机构
[1] Babraham Inst, Mol Signalling Lab, Cambridge CB2 4AT, England
[2] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England
[3] Natl Inst Hlth Sci, Div Pharmacol, Setagaya Ku, Tokyo 158, Japan
关键词
D O I
10.1074/jbc.274.47.33327
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Graded or "quantal" Ca2+ release from intracellular stores has been observed in various cell types following activation of either ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (InsP(3)R). The mechanism causing the release of Ca2+ stores in direct proportion to the strength of stimulation is unresolved. We investigated the properties of quantal Ca2+ release evoked by activation of RyR in PC12 cells, and in particular whether the sensitivity of RyR to the agonist caffeine was altered by lumenal Ca2+. Quantal Ca2+ release was observed in cells stimulated with 1 to 40 mM caffeine, a range of caffeine concentrations giving a >10-fold change in lumenal Ca2+ content. The Ca2+ load of the caffeine-sensitive stores was modulated by allowing them to refill for varying times after complete discharge with maximal caffeine, or by depolarizing the cells with K+ to enhance their normal steady-state loading. The threshold for RyR activation was sensitized similar to 10-fold as the Ca2+ load increased from a minimal to a maximal loading. In addition, the fraction of Ca2+ released by low caffeine concentrations increased. Our data suggest that RyR are sensitive to lumenal Ca2+ over the full range of Ca2+ loads that can be achieved in an intact PC12 cell, and that changes in RyR sensitivity may be responsible for the termination of Ca2+ release underlying the quantal effect.
引用
收藏
页码:33327 / 33333
页数:7
相关论文
共 58 条
[1]   Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin [J].
Alonso, MT ;
Barrero, MJ ;
Michelena, P ;
Carnicero, E ;
Cuchillo, I ;
García, AG ;
García-Sancho, J ;
Montero, M ;
Alvarez, J .
JOURNAL OF CELL BIOLOGY, 1999, 144 (02) :241-254
[2]   Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells - A comparative study [J].
Barrero, MJ ;
Montero, M ;
Alvarez, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27694-27699
[3]   Incremental Ca2+ mobilization by inositol trisphosphate receptors is unlikely to be mediated by their desensitization or regulation by luminal or cytosolic Ca2+ [J].
Beecroft, MD ;
Taylor, CW .
BIOCHEMICAL JOURNAL, 1997, 326 :215-220
[4]   Expression and function of ryanodine receptors in nonexcitable cells [J].
Bennett, DL ;
Cheek, TR ;
Berridge, MJ ;
DeSmedt, H ;
Parys, JB ;
Missiaen, L ;
Bootman, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6356-6362
[5]   Calcium - a life and death signal [J].
Berridge, MJ ;
Bootman, MD ;
Lipp, P .
NATURE, 1998, 395 (6703) :645-648
[6]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[7]  
BOOTMAN MD, 1994, J BIOL CHEM, V269, P24783
[8]   QUANTAL CA2+ RELEASE FROM INSP(3)-SENSITIVE INTRACELLULAR CA2+ STORES [J].
BOOTMAN, MD .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 1994, 98 (02) :157-166
[9]   ALL-OR-NOTHING CA2+ MOBILIZATION FROM THE INTRACELLULAR STORES OF SINGLE HISTAMINE-STIMULATED HELA-CELLS [J].
BOOTMAN, MD ;
BERRIDGE, MJ ;
TAYLOR, CW .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 450 :163-178
[10]   THE ELEMENTAL PRINCIPLES OF CALCIUM SIGNALING [J].
BOOTMAN, MD ;
BERRIDGE, MJ .
CELL, 1995, 83 (05) :675-678