Existence of bounded invariant probability densities for Markov chains

被引:3
作者
HernandezLerma, O
Lasserre, JB
机构
[1] INST POLITECN NACL,CINVESTAV,DEPT MATEMAT,MEXICO CITY 07000,DF,MEXICO
[2] CNRS,LAAS,F-31077 TOULOUSE,FRANCE
关键词
Markov chains; invariant probability density; linear equations in Banach (L(p)) spaces;
D O I
10.1016/0167-7152(95)00146-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Generalized Farkas' Theorem of Craven and Koliha (1977) is used to derive necessary and sufficient conditions for the existence of a bounded invariant probability density for a Markov chain.
引用
收藏
页码:359 / 366
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1957, LINEAR OPERATORS 1
[2]   RATES OF CONVERGENCE FOR EVERYWHERE-POSITIVE MARKOV-CHAINS [J].
BAXTER, JR ;
ROSENTHAL, JS .
STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) :333-338
[3]  
BENES VE, 1967, J APPL PROBAB, V5, P203
[4]   ON GEOMETRIC ERGODICITY OF NONLINEAR AUTOREGRESSIVE MODELS [J].
BHATTACHARYA, R ;
LEE, CH .
STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) :311-315
[5]   ERGODICITY OF NONLINEAR FIRST-ORDER AUTOREGRESSIVE MODELS [J].
BHATTACHARYA, RN ;
LEE, CH .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (01) :207-219
[6]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[7]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[8]   GENERALIZATIONS OF FARKAS THEOREM [J].
CRAVEN, BD ;
KOLIHA, JJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (06) :983-997
[9]  
HERNANDEZLERMA O, 1996, IN PRESS STAT PROBAB
[10]  
KREIN SG, 1982, T MATH MONO, V54