Molecular dynamics of folding of secondary structures in Go-type models of proteins

被引:103
作者
Hoang, TX [1 ]
Cieplak, M [1 ]
机构
[1] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
关键词
D O I
10.1063/1.481261
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider six different secondary structures of proteins and construct two types of Go-type off-lattice models: with the steric constraints and without. The basic amino acid-amino acid potential is Lennard-Jones for the native contacts and a soft repulsion for the non-native contacts. The interactions are chosen to make the target secondary structure be the native state of the system. We provide a thorough equilibrium and kinetic characterization of the sequences through the molecular dynamics simulations with the Langevin noise. Models with the steric constraints are found to be better folders and to be more stable, especially in the case of the beta structures. Phononic spectra for vibrations around the native states have low frequency gaps that correlate with the thermodynamic stability. Folding of the secondary structures proceeds through a well-defined sequence of events. For instance, alpha helices fold from the ends first. The closer to the native state, the faster establishment of the contacts. Increasing the system size deteriorates the folding characteristics. We study the folding times as a function of viscous friction and find a regime of moderate friction with the linear dependence. We also consider folding when one end of a structure is pinned which imitates instantaneous conditions when a protein is being synthesized. We find that, under such circumstances, folding of helices is faster and that of the beta sequences slower. (C) 2000 American Institute of Physics. [S0021-9606(00)51615-8].
引用
收藏
页码:6851 / 6862
页数:12
相关论文
共 49 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids
[2]   The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics [J].
Becker, OM ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (04) :1495-1517
[3]   Formation and stability of β-hairpin structures in polypeptides [J].
Blanco, F ;
Ramírez-Alvarado, M ;
Serrano, L .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (01) :107-111
[4]   FIRST-PRINCIPLES CALCULATION OF THE FOLDING FREE-ENERGY OF A 3-HELIX BUNDLE PROTEIN [J].
BOCZKO, EM ;
BROOKS, CL .
SCIENCE, 1995, 269 (5222) :393-396
[5]  
Callaway J., 2013, Quantum Theory of the Solid State
[6]   KINETICS AND THERMODYNAMICS OF FOLDING IN MODEL PROTEINS [J].
CAMACHO, CJ ;
THIRUMALAI, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :6369-6372
[7]   TRANSITION-STATES AND FOLDING DYNAMICS OF PROTEINS AND HETEROPOLYMERS [J].
CHAN, HS ;
DILL, KA .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (12) :9238-9257
[8]  
Chan HS, 1998, PROTEINS, V30, P2, DOI 10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO
[9]  
2-R
[10]   THE PROTEIN FOLDING PROBLEM [J].
CHAN, HS ;
DILL, KA .
PHYSICS TODAY, 1993, 46 (02) :24-32