Potts model on complex networks

被引:62
作者
Dorogovtsev, SN
Goltsev, AV
Mendes, JFF
机构
[1] Univ Porto, Dept Fis, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, Ctr Fis Porto, P-4169007 Oporto, Portugal
[3] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
[4] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
D O I
10.1140/epjb/e2004-00019-y
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider the general p-state Potts model on random networks with a given degree distribution (random Bethe lattices). We find the effect of the suppression of a first order phase transition in this model when the degree distribution of the network is fat-tailed, that is, in more precise terms, when the second moment of the distribution diverges. In this situation the transition is continuous and of infinite order, and size effect is anomalously strong. In particular, in the case of p = 1, we arrive at the exact solution, which coincides with the known solution of the percolation problem on these networks.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 45 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[3]   Ferromagnetic phase transition in Barabasi-Albert networks [J].
Aleksiejuk, A ;
Holyst, JA ;
Stauffer, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) :260-266
[4]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   On the properties of small-world network models [J].
Barrat, A ;
Weigt, M .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (03) :547-560
[7]   A simple asymmetric evolving random network [J].
Bauer, M ;
Bernard, D .
JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (3-4) :703-737
[8]  
Baxter R, 1982, Exactly Solved Models in Statistical Mechanics Academic
[9]  
Bekessy A., 1972, Studia Scientiarum Mathematicarum Hungarica, V7, P343
[10]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307