Error propagation for velocity and shear stress prediction using 2D models for environmental management

被引:78
作者
Pasternack, Gregory B.
Gilbert, Andrew T.
Wheaton, Joseph M.
Buckland, Evan M.
机构
[1] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[2] Univ Wales, Inst Geog & Earth Sci, Aberystwyth SY23 3DB, Dyfed, Wales
关键词
shear stress; 2D models; river restoration; hydraulics; SEDIMENT TRANSPORT; HIGH-RESOLUTION; BOUNDARY SHEAR; CHINOOK SALMON; RIVER; PROFILES; DYNAMICS; SENSITIVITY; HYDRAULICS; SIMULATION;
D O I
10.1016/j.jhydrol.2005.12.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Resource managers, scientists, government regulators, and stakeholders are considering sophisticated numerical models for managing complex environmental problems. In this study, observations from a river-rehabilitation experiment involving gravel augmentation and spawning habitat enhancement were used to assess sources and magnitudes of error in depth, velocity, and shear velocity predictions made at the 1-m scale with acommercial two-dimensional (depth-averaged) model. Error in 2D model depth prediction averaged 21%. This error was attributable to topographic survey resolution, which at 1 pt per 1.14 m(2), was inadequate to resolve small humps and depressions influencing point measurements. Error in 2D model velocity prediction averaged 29%. More than half of this error was attributable to depth prediction error. Despite depth and velocity error, 56% of tested 2D model predictions of shear velocity were within the 95% confidence limit of the best field-based estimation method. Ninety percent of the error in shear velocity prediction was explained by velocity prediction error. Multiple field-based estimates of shear velocity differed by up to 160%, so the lower error for the 2D model's predictions suggests such models are at least as accurate as field measurement. 2D models enable detailed, spatially distributed estimates compared to the small number measurable in a field campaign of comparable cost. They also can be used for design evaluation. Although such numerical models are limited to channel types adhering to model assumptions and yield predictions only accurate to similar to 20-30%, they can provide a useful tool. for river- rehabilitation design and assessment, including spatially diverse habitat heterogeneity as well as for pre- and post-project appraisal. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 241
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 1995, NATURAL ANTHROPOGENI, DOI DOI 10.1029/GM089P0057
[2]   MODELING FLOODPLAIN FLOWS USING A 2-DIMENSIONAL FINITE-ELEMENT MODEL [J].
BATES, PD ;
ANDERSON, MG ;
BAIRD, L ;
WALLING, DE ;
SIMM, D .
EARTH SURFACE PROCESSES AND LANDFORMS, 1992, 17 (06) :575-588
[3]   A preliminary investigation into the impact of initial conditions on flood inundation predictions using a time/space distributed sensitivity analysis [J].
Bates, PD ;
Anderson, MG .
CATENA, 1996, 26 (1-2) :115-134
[4]   A simple raster-based model for flood inundation simulation [J].
Bates, PD ;
De Roo, APJ .
JOURNAL OF HYDROLOGY, 2000, 236 (1-2) :54-77
[5]  
Biron PM, 1998, EARTH SURF PROC LAND, V23, P133, DOI 10.1002/(SICI)1096-9837(199802)23:2<133::AID-ESP824>3.0.CO
[6]  
2-N
[7]   Modelling three-dimensional flow structures and patterns of boundary shear stress in a natural pool-riffle sequence [J].
Booker, DJ ;
Sear, DA ;
Payne, AJ .
EARTH SURFACE PROCESSES AND LANDFORMS, 2001, 26 (05) :553-576
[8]  
Brasington J, 2000, EARTH SURF PROC LAND, V25, P973, DOI 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO
[9]  
2-Y
[10]   Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California [J].
Brown, LR .
ENVIRONMENTAL BIOLOGY OF FISHES, 2000, 57 (03) :251-269