Irrational phase synchronization

被引:12
作者
Baptista, MS
Boccaletti, S
Josic, K
Leyva, I
机构
[1] Ist Nazl Ott Applicata, I-50125 Florence, Italy
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevE.69.056228
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the occurrence of physically observable phase locked states between chaotic oscillators and rotors in which the frequencies of the coupled systems are irrationally related. For two chaotic oscillators, the phenomenon occurs as a result of a coupling term which breaks the 2pi invariance in the phase equations. In the case of rotors, a coupling term in the angular velocities results in very long times during which the coupled systems exhibit alternatively irrational phase synchronization and random phase diffusion. The range of parameters for which the phenomenon occurs contains an open set, and is thus physically observable.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Synchronization of homoclinic chaos [J].
Allaria, E ;
Arecchi, FT ;
Di Garbo, A ;
Meucci, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :791-794
[2]  
[Anonymous], 1991, Dynamics of Josephson Junctions and Circuits
[3]  
BAPTISTA MS, 2000, RECENT DEV NONLINEAR, P46620
[4]  
BEST RE, 1984, PHASE LOCKED LOOPS
[5]   Complex dynamics and phase synchronization in spatially extended ecological systems [J].
Blasius, B ;
Huppert, A ;
Stone, L .
NATURE, 1999, 399 (6734) :354-359
[6]  
Blekhman I, 1981, SYNCHRONIZATION NATU
[7]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[8]   Synchronization of chaotic structurally nonequivalent systems [J].
Boccaletti, S ;
Valladares, DL ;
Kurths, J ;
Maza, D ;
Mancini, H .
PHYSICAL REVIEW E, 2000, 61 (04) :3712-3715
[9]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[10]   Unifying framework for synchronization of coupled dynamical systems [J].
Boccaletti, S. ;
Pecora, L.M. ;
Pelaez, A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 II) :1-066219