Small solutions to polynomial equations, and low exponent RSA vulnerabilities

被引:454
作者
Coppersmith, D
机构
[1] IBM Research, T. J. Watson Research Center, Yorktown Heights
关键词
polynomial; RSA; factoring;
D O I
10.1007/s001459900030
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show how to find sufficiently small integer solutions to a polynomial in a single variable module N, and to a polynomial in two variables over the integers. The methods sometimes extend to more variables. As applications: RSA encryption with exponent 3 is vulnerable if the opponent knows two-thirds of the message, or if two messages agree over eight-ninths of their length; and we can find the factors of N = P Q if we are given the high order 1/4 log(2) N bits of P.
引用
收藏
页码:233 / 260
页数:28
相关论文
共 15 条
  • [1] Bellare M., 1995, Lecture Notes Comp. Sci, V950, P92, DOI [DOI 10.1007/BFB0053428, 10.1007/BFb0053428]
  • [2] Coppersmith D, 1996, LECT NOTES COMPUT SC, V1070, P178
  • [3] COPPERSMITH D, 1996, LECT NOTES COMPUT SC, V1070, P1
  • [4] COPPERSMITH D, 1995, 19905 IBM RC
  • [5] COPPERSMITH D, LNCS, V1070, P96
  • [6] FRANKLIN M, RUMP SESS CRYPT 95
  • [7] SOLVING SIMULTANEOUS MODULAR EQUATIONS OF LOW DEGREE
    HASTAD, J
    [J]. SIAM JOURNAL ON COMPUTING, 1988, 17 (02) : 336 - 341
  • [8] JOYE M, 1996, CAMBR WORKSH CRYPT P
  • [9] Knuth Donald, 1981, ART COMPUTER PROGRAM, V2
  • [10] FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS
    LENSTRA, AK
    LENSTRA, HW
    LOVASZ, L
    [J]. MATHEMATISCHE ANNALEN, 1982, 261 (04) : 515 - 534