Energy transport in weakly anharmonic chains

被引:59
作者
Aoki, Kenichiro
Lukkarinen, Jani
Spohn, Herbert
机构
[1] Keio Univ, Dept Phys, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[2] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
Fourier's law; phonon Boltzmann equation; molecular dynamics; one-dimensional lattice dynamics;
D O I
10.1007/s10955-006-9171-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the energy transport in a one-dimensional lattice of oscillators with a harmonic nearest neighbor coupling and a harmonic plus quartic on-site potential. As numerically observed for particular coupling parameters before, and confirmed by our study, such chains satisfy Fourier's law: a chain of length N coupled to thermal reservoirs at both ends has an average steady state energy current proportional to 1/N. On the theoretical level we employ the Peierls transport equation for phonons and note that beyond a mere exchange of labels it admits nondegenerate phonon collisions. These collisions are responsible for a finite heat conductivity. The predictions of kinetic theory are compared with molecular dynamics simulations. In the range of weak anharmonicity, respectively low temperatures, reasonable agreement is observed.
引用
收藏
页码:1105 / 1129
页数:25
相关论文
共 25 条
[1]  
[Anonymous], 1986, TRANSPORT PHONON SYS
[2]   Violations of local equilibrium and linear response in classical lattice systems [J].
Aoki, K ;
Kusnezov, D .
PHYSICS LETTERS A, 2003, 309 (5-6) :377-381
[3]   Nonequilibrium statistical mechanics of classical lattice φ4 field theory [J].
Aoki, K ;
Kusnezov, D .
ANNALS OF PHYSICS, 2002, 295 (01) :50-80
[4]   Bulk properties of anharmonic chains in strong thermal gradients:: non-equilibrium φ4 theory [J].
Aoki, K ;
Kusnezov, D .
PHYSICS LETTERS A, 2000, 265 (04) :250-256
[5]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[6]   HEAT FLOW IN REGULAR AND DISORDERED HARMONIC CHAINS [J].
CASHER, A ;
LEBOWITZ, JL .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (08) :1701-&
[7]  
Dhar A, 2001, PHYS REV LETT, V86, P5882, DOI 10.1103/PhysRevLett86.5882
[8]  
FERMI E, 1974, NONLINEAR WAVE MOTIO, P143
[9]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[10]   Heat conduction in one-dimensional nonintegrable systems [J].
Hu, BB ;
Li, BW ;
Zhao, H .
PHYSICAL REVIEW E, 2000, 61 (04) :3828-3831