Bayesian multilevel estimation with poststratification: State-level estimates from national polls

被引:245
作者
Park, DK [1 ]
Gelman, A
Bafumi, J
机构
[1] Washington Univ, Dept Polit Sci & Appl Sci, St Louis, MO 63130 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Columbia Univ, Dept Polit Sci, New York, NY 10027 USA
[4] Columbia Univ, Dept Polit Sci, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/pan/mph024
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
We fit a multilevel logistic regression model for the mean of a binary response variable conditional on poststratification cells. This approach combines the modeling approach often used in small-area estimation with the population information used in poststratification (see Gelman and Little 1997, Survey Methodology 23:127-135). To validate the method, we apply it to U.S. preelection polls for 1988 and 1992, poststratified by state, region, and the usual demographic variables. We evaluate the model by comparing it to state-level election outcomes. The multilevel model outperforms more commonly used models in political science. We envision the most important usage of this method to be not forecasting elections but estimating public opinion on a variety of issues at the state level.
引用
收藏
页码:375 / 385
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1965, CANDIDATES ISSUES ST
[2]   Measuring citizen and government ideology in the American states, 1960-93 [J].
Berry, WD ;
Ringquist, EJ ;
Fording, RC ;
Hanson, RL .
AMERICAN JOURNAL OF POLITICAL SCIENCE, 1998, 42 (01) :327-348
[3]   Public opinion in the American states: New perspectives using national survey data [J].
Brace, P ;
Sims-Butler, K ;
Arceneaux, K ;
Johnson, M .
AMERICAN JOURNAL OF POLITICAL SCIENCE, 2002, 46 (01) :173-189
[4]  
Bryk A.S, 2001, HIERARCHICAL LINEAR
[5]  
Burdick E. L., 1964, 480
[6]  
Erikson Robert S., 1993, STATEHOUSE DEMOCRACY
[7]   WHY ARE AMERICAN PRESIDENTIAL-ELECTION CAMPAIGN POLLS SO VARIABLE WHEN VOTES ARE SO PREDICTABLE [J].
GELMAN, A ;
KING, G .
BRITISH JOURNAL OF POLITICAL SCIENCE, 1993, 23 :409-451
[8]  
Gelman A, 2003, BAYESIAN DATA ANAL
[9]  
GELMAN A, 2004, UNPUB PRIOR DISTRIBU
[10]  
Gelman A., 1997, Survey Methodology, V23, P127