Yeast, a model organism for iron and copper metabolism studies

被引:133
作者
De Freitas, J [1 ]
Wintz, H [1 ]
Kim, JH [1 ]
Poynton, H [1 ]
Fox, T [1 ]
Vulpe, C [1 ]
机构
[1] Univ Calif Berkeley, Dept Nutr Sci, Berkeley, CA 94720 USA
关键词
copper; iron; metabolism; metal; yeast;
D O I
10.1023/A:1020771000746
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Virtually all organisms on earth depend on transition metals for survival. Iron and copper are particularly important because they participate in vital electron transfer reactions, and are thus cofactors of many metabolic enzymes. Their ability to transfer electrons also render them toxic when present in excess. Disturbances of iron and copper steady-state levels can have profound effects on cellular metabolism, growth and development. It is critical to maintain these metals in a narrow range between utility and toxicity. Organisms ranging from bacteria and plants to mammals have developed sophisticated mechanisms to control metal homeostasis. In this review, we will present an overview of the current understanding of iron and copper metabolism in yeast, and the utility of yeast as a model organism to investigate iron and copper metabolism in mammals and plants.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 101 条
[1]   Chemistry and biology of eukaryotic iron metabolism [J].
Aisen, P ;
Enns, C ;
Wessling-Resnick, M .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2001, 33 (10) :940-959
[2]   Defective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease [J].
Ambrosini, L ;
Mercer, JFB .
HUMAN MOLECULAR GENETICS, 1999, 8 (08) :1547-1555
[3]   Regulation of metallothionein gene expression by oxidative stress and metal ions [J].
Andrews, GK .
BIOCHEMICAL PHARMACOLOGY, 2000, 59 (01) :95-104
[4]  
Andrews NC, 1999, NUTR REV, V57, P114, DOI 10.1111/j.1753-4887.1999.tb06934.x
[5]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712
[6]   Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle [J].
Beers, J ;
Glerum, DM ;
Tzagoloff, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (52) :33191-33196
[7]   DNA STRAND BREAKS PRODUCED BY OXIDATIVE STRESS IN MAMMALIAN-CELLS EXHIBIT 3'-PHOSPHOGLYCOLATE TERMINI [J].
BERTONCINI, CRA ;
MENEGHINI, R .
NUCLEIC ACIDS RESEARCH, 1995, 23 (15) :2995-3002
[8]   Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. [J].
Blaiseau, PL ;
Lesuisse, E ;
Camadro, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34221-34226
[9]   Regulation of plant ferritin synthesis:: how and why [J].
Briat, JF ;
Lobréaux, S ;
Grignon, N ;
Vansuyt, G .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 56 (1-2) :155-166
[10]   WILSON DISEASE AND MENKES DISEASE - NEW HANDLES ON HEAVY-METAL TRANSPORT [J].
BULL, PC ;
COX, DW .
TRENDS IN GENETICS, 1994, 10 (07) :246-252