Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle

被引:59
作者
Chen, HC
Lee, HC
Lin, TY
Li, WH
Chen, BS [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[2] Natl Tsing Hua Univ, Dept Life Sci, Hsinchu 300, Taiwan
[3] Natl Tsing Hua Univ, Inst Bioinformat & Struct Biol, Hsinchu 300, Taiwan
[4] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
[5] Acad Sinica, Genom Res Ctr, Taipei 115, Taiwan
关键词
D O I
10.1093/bioinformatics/bth178
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Genome-wide gene expression programs have been monitored and analyzed in the yeast Saccharomyces cerevisiae, but how cells regulate global gene expression programs in response to environmental changes is still far from being understood. We present a systematic approach to quantitatively characterize the transcriptional regulatory network of the yeast cell cycle. For the interpretative purpose, 20 target genes were selected because their expression patterns fluctuated in a periodic manner concurrent with the cell cycle and peaked at different phases. In addition to the most significant five possible regulators of each specific target gene, the expression pattern of each target gene affected by synergy of the regulators during the cell cycle was characterized. Our first step includes modeling the dynamics of gene expression and extracting the transcription rate from a time-course microarray data. The second step embraces finding the regulators that possess a high correlation with the transcription rate of the target gene, and quantifying the regulatory abilities of the identified regulators. Results: Our network discerns not only the role of the activator or repressor for each specific regulator, but also the regulatory ability of the regulator to the transcription rate of the target gene. The highly coordinated regulatory network has identified a group of significant regulators responsible for the gene expression program through the cell cycle progress. This approach may be useful for computing the regulatory ability of the transcriptional regulatory networks in more diverse conditions and in more complex eukaryotes.
引用
收藏
页码:1914 / 1927
页数:14
相关论文
共 49 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]   Functional genomics as applied to mapping transcription regulatory networks [J].
Banerjee, N ;
Zhang, MX .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (03) :313-317
[4]   PROPERTIES OF SACCHAROMYCES-CEREVISIAE WEE1 AND ITS DIFFERENTIAL REGULATION OF P34(CDC28) IN RESPONSE TO G(1) AND G(2) CYCLINS [J].
BOOHER, RN ;
DESHAIES, RJ ;
KIRSCHNER, MW .
EMBO JOURNAL, 1993, 12 (09) :3417-3426
[5]   Division of the nucleolus and its release of CDC14 during anaphase of meiosis I depends on separase, SPO12, and SLK19 [J].
Buonomo, SBC ;
Rabitsch, KP ;
Fuchs, J ;
Gruber, S ;
Sullivan, M ;
Uhlmann, F ;
Petronczki, M ;
Tóth, A ;
Nasmyth, K .
DEVELOPMENTAL CELL, 2003, 4 (05) :727-739
[6]   Regulatory element detection using correlation with expression [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
NATURE GENETICS, 2001, 27 (02) :167-171
[7]   Kinetic analysis of a molecular model of the budding yeast cell cycle [J].
Chen, KC ;
Csikasz-Nagy, A ;
Gyorffy, B ;
Val, J ;
Novak, B ;
Tyson, JJ .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (01) :369-391
[8]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[9]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[10]   Discovery and modeling of transcriptional regulatory regions [J].
Fickett, JW ;
Wasserman, WW .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (01) :19-24